Token migration announcement. XPower token contract has migrated to a new address.
Overview
AVAX Balance
AVAX Value
$0.00More Info
Private Name Tags
ContractCreator
TokenTracker
Multichain Info
No addresses found
Latest 25 from a total of 2,410 transactions
Transaction Hash |
Method
|
Block
|
From
|
To
|
|||||
---|---|---|---|---|---|---|---|---|---|
Approve | 40447851 | 434 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 40447606 | 434 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 40123552 | 441 days ago | IN | 0 AVAX | 0.00122846 | ||||
Approve | 39615930 | 453 days ago | IN | 0 AVAX | 0.00123641 | ||||
Approve | 37903310 | 493 days ago | IN | 0 AVAX | 0.00072962 | ||||
Approve | 37903305 | 493 days ago | IN | 0 AVAX | 0.00072962 | ||||
Approve | 37903292 | 493 days ago | IN | 0 AVAX | 0.00072962 | ||||
Approve | 37903285 | 493 days ago | IN | 0 AVAX | 0.00072962 | ||||
Approve | 37903281 | 493 days ago | IN | 0 AVAX | 0.00072962 | ||||
Renounce Role | 37501805 | 503 days ago | IN | 0 AVAX | 0.0012301 | ||||
Seal All | 37501801 | 503 days ago | IN | 0 AVAX | 0.00154298 | ||||
Grant Role | 37501764 | 503 days ago | IN | 0 AVAX | 0.00313823 | ||||
Approve | 37088375 | 512 days ago | IN | 0 AVAX | 0.00121339 | ||||
Approve | 36107881 | 536 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35868040 | 541 days ago | IN | 0 AVAX | 0.00122877 | ||||
Approve | 35821819 | 542 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35820039 | 543 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35444660 | 551 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35442412 | 551 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35357248 | 553 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35308100 | 555 days ago | IN | 0 AVAX | 0.00122909 | ||||
Approve | 35308087 | 555 days ago | IN | 0 AVAX | 0.00122909 | ||||
Approve | 35186361 | 557 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35186203 | 557 days ago | IN | 0 AVAX | 0.00123672 | ||||
Approve | 35185945 | 558 days ago | IN | 0 AVAX | 0.00123672 |
Loading...
Loading
Contract Name:
XPower
Compiler Version
v0.8.19+commit.7dd6d404
Optimization Enabled:
Yes with 200 runs
Other Settings:
default evmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: GPL-3.0 // solhint-disable not-rely-on-time // solhint-disable no-empty-blocks pragma solidity ^0.8.0; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {Ownable} from "@openzeppelin/contracts/access/Ownable.sol"; import {ERC20} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol"; import {FeeTracker} from "./base/FeeTracker.sol"; import {Migratable, MoeMigratable} from "./base/Migratable.sol"; import {Supervised, XPowerSupervised} from "./base/Supervised.sol"; import {Constants} from "./libs/Constants.sol"; import {Integrator} from "./libs/Integrator.sol"; import {Polynomials, Polynomial} from "./libs/Polynomials.sol"; import {Rpp} from "./libs/Rpp.sol"; /** * Class for the XPOW proof-of-work tokens: It verifies, that the nonce and the * block-hash result in a positive amount. After a successful verification, the * corresponding amount is minted for the beneficiary (plus the treasury). */ contract XPower is ERC20, ERC20Burnable, MoeMigratable, FeeTracker, XPowerSupervised, Ownable { using Integrator for Integrator.Item[]; using Polynomials for Polynomial; /** set of nonce-hashes already minted for */ mapping(bytes32 => bool) private _hashes; /** map from block-hashes to timestamps */ mapping(bytes32 => uint256) private _timestamps; /** map from intervals to block-hashes */ mapping(uint256 => bytes32) private _blockHashes; /** @param moeBase addresses of old contracts */ /** @param deadlineIn seconds to end-of-migration */ constructor( address[] memory moeBase, uint256 deadlineIn ) // ERC20 constructor: name, symbol ERC20("XPower", "XPOW") // Migratable: old contract, rel. deadline [seconds] Migratable(moeBase, deadlineIn) {} /** @return number of decimals of representation */ function decimals() public view virtual override returns (uint8) { return Constants.DECIMALS; } /** emitted on caching most recent block-hash */ event Init(bytes32 blockHash, uint256 timestamp); /** cache most recent block-hash */ function init() external { uint256 interval = currentInterval(); assert(interval > 0); if (uint256(_blockHashes[interval]) == 0) { bytes32 blockHash = blockhash(block.number - 1); assert(blockHash > 0); uint256 timestamp = block.timestamp; assert(timestamp > 0); _cache(blockHash, timestamp); _blockHashes[interval] = blockHash; emit Init(blockHash, timestamp); } else { bytes32 blockHash = _blockHashes[interval]; uint256 timestamp = _timestamps[blockHash]; emit Init(blockHash, timestamp); } } /** cache block-hash at timestamp */ function _cache(bytes32 blockHash, uint256 timestamp) private { _timestamps[blockHash] = timestamp; } /** mint tokens for to-beneficiary, block-hash & data (incl. nonce) */ function mint(address to, bytes32 blockHash, bytes memory data) external tracked { // check block-hash to be in current interval require(recent(blockHash), "expired block-hash"); // calculate nonce-hash & pair-index for to, block-hash & data (bytes32 nonceHash, bytes32 pairIndex) = hashOf(to, blockHash, data); require(unique(pairIndex), "duplicate nonce-hash"); // calculate number of zeros of nonce-hash uint256 zeros = zerosOf(nonceHash); require(zeros > 0, "empty nonce-hash"); // calculate amount of tokens of zeros uint256 amount = amountOf(zeros); // ensure unique (nonce-hash, block-hash) _hashes[pairIndex] = true; // mint for project treasury _mint(owner(), shareOf(amount)); // mint for beneficiary _mint(to, amount); } /** @return block-hash */ function blockHashOf(uint256 interval) public view returns (bytes32) { return _blockHashes[interval]; } /** @return current interval's timestamp */ function currentInterval() public view returns (uint256) { return block.timestamp - (block.timestamp % (1 hours)); } /** check whether block-hash has recently been cached */ function recent(bytes32 blockHash) public view returns (bool) { return _timestamps[blockHash] > currentInterval(); } /** @return hash of contract, to-beneficiary, block-hash & data (incl. nonce) */ function hashOf(address to, bytes32 blockHash, bytes memory data) public view returns (bytes32, bytes32) { bytes32 nonceHash = keccak256(bytes.concat(bytes20(uint160(address(this)) ^ uint160(to)), blockHash, data)); return (nonceHash, nonceHash ^ blockHash); } /** check whether (nonce-hash, block-hash) pair is unique */ function unique(bytes32 pairIndex) public view returns (bool) { return !_hashes[pairIndex]; } /** @return number of leading-zeros */ function zerosOf(bytes32 nonceHash) public pure returns (uint8) { if (nonceHash > 0) { return uint8(63 - (Math.log2(uint256(nonceHash)) >> 2)); } return 64; } /** @return amount (for level) */ function amountOf(uint256 level) public view returns (uint256) { return (2 ** level - 1) * 10 ** decimals(); } /** integrator of shares: [(stamp, value)] */ Integrator.Item[] public shares; /** parametrization of share: coefficients */ uint256[] private _share; /** @return duration weighted mean of shares */ function shareOf(uint256 amount) public view returns (uint256) { if (shares.length == 0) { return shareTargetOf(amount); } uint256 stamp = block.timestamp; uint256 value = shareTargetOf(amountOf(1)); uint256 point = shares.meanOf(stamp, value); return (point * amount) / amountOf(1); } /** @return share target */ function shareTargetOf(uint256 amount) public view returns (uint256) { return shareTargetOf(amount, getShare()); } /** @return share target */ function shareTargetOf(uint256 amount, uint256[] memory array) private pure returns (uint256) { return Polynomial(array).eval3(amount); } /** fractional treasury share: 33[%] */ uint256 private constant SHARE_MUL = 1; uint256 private constant SHARE_DIV = 2; uint256 private constant SHARE_EXP = 256; /** @return share parameters */ function getShare() public view returns (uint256[] memory) { if (_share.length > 0) { return _share; } uint256[] memory array = new uint256[](4); array[1] = SHARE_DIV; array[2] = SHARE_MUL; array[3] = SHARE_EXP; return array; } /** set share parameters */ function setShare(uint256[] memory array) public onlyRole(SHARE_ROLE) { Rpp.checkArray(array); // check share reparametrization of value uint256 nextValue = shareTargetOf(amountOf(1), array); uint256 currValue = shareTargetOf(amountOf(1)); Rpp.checkValue(nextValue, currValue, amountOf(1)); // check share reparametrization of stamp uint256 lastStamp = shares.lastOf().stamp; uint256 currStamp = block.timestamp; Rpp.checkStamp(currStamp, lastStamp); // append (stamp, share-of) to integrator shares.append(currStamp, currValue); // all requirements true: use array _share = array; } /** @return true if this contract implements the interface defined by interface-id */ function supportsInterface( bytes4 interfaceId ) public view virtual override(MoeMigratable, Supervised) returns (bool) { return super.supportsInterface(interfaceId); } /** @return fee-estimate plus averages over gas and gas-price */ function fees() external view returns (uint256[] memory) { return _fees(FEE_ADD, FEE_MUL, FEE_DIV); } /** fee-tracker estimate: 21_000+700+1360+1088+68*8 */ uint256 private constant FEE_ADD = 24_692_000_000_000; uint256 private constant FEE_MUL = 1_0451368666278393; uint256 private constant FEE_DIV = 1_0000000000000000; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/AccessControl.sol) pragma solidity ^0.8.0; import "./IAccessControl.sol"; import "../utils/Context.sol"; import "../utils/Strings.sol"; import "../utils/introspection/ERC165.sol"; /** * @dev Contract module that allows children to implement role-based access * control mechanisms. This is a lightweight version that doesn't allow enumerating role * members except through off-chain means by accessing the contract event logs. Some * applications may benefit from on-chain enumerability, for those cases see * {AccessControlEnumerable}. * * Roles are referred to by their `bytes32` identifier. These should be exposed * in the external API and be unique. The best way to achieve this is by * using `public constant` hash digests: * * ```solidity * bytes32 public constant MY_ROLE = keccak256("MY_ROLE"); * ``` * * Roles can be used to represent a set of permissions. To restrict access to a * function call, use {hasRole}: * * ```solidity * function foo() public { * require(hasRole(MY_ROLE, msg.sender)); * ... * } * ``` * * Roles can be granted and revoked dynamically via the {grantRole} and * {revokeRole} functions. Each role has an associated admin role, and only * accounts that have a role's admin role can call {grantRole} and {revokeRole}. * * By default, the admin role for all roles is `DEFAULT_ADMIN_ROLE`, which means * that only accounts with this role will be able to grant or revoke other * roles. More complex role relationships can be created by using * {_setRoleAdmin}. * * WARNING: The `DEFAULT_ADMIN_ROLE` is also its own admin: it has permission to * grant and revoke this role. Extra precautions should be taken to secure * accounts that have been granted it. We recommend using {AccessControlDefaultAdminRules} * to enforce additional security measures for this role. */ abstract contract AccessControl is Context, IAccessControl, ERC165 { struct RoleData { mapping(address => bool) members; bytes32 adminRole; } mapping(bytes32 => RoleData) private _roles; bytes32 public constant DEFAULT_ADMIN_ROLE = 0x00; /** * @dev Modifier that checks that an account has a specific role. Reverts * with a standardized message including the required role. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ * * _Available since v4.1._ */ modifier onlyRole(bytes32 role) { _checkRole(role); _; } /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControl).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) public view virtual override returns (bool) { return _roles[role].members[account]; } /** * @dev Revert with a standard message if `_msgSender()` is missing `role`. * Overriding this function changes the behavior of the {onlyRole} modifier. * * Format of the revert message is described in {_checkRole}. * * _Available since v4.6._ */ function _checkRole(bytes32 role) internal view virtual { _checkRole(role, _msgSender()); } /** * @dev Revert with a standard message if `account` is missing `role`. * * The format of the revert reason is given by the following regular expression: * * /^AccessControl: account (0x[0-9a-f]{40}) is missing role (0x[0-9a-f]{64})$/ */ function _checkRole(bytes32 role, address account) internal view virtual { if (!hasRole(role, account)) { revert( string( abi.encodePacked( "AccessControl: account ", Strings.toHexString(account), " is missing role ", Strings.toHexString(uint256(role), 32) ) ) ); } } /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) public view virtual override returns (bytes32) { return _roles[role].adminRole; } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleGranted} event. */ function grantRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _grantRole(role, account); } /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. * * May emit a {RoleRevoked} event. */ function revokeRole(bytes32 role, address account) public virtual override onlyRole(getRoleAdmin(role)) { _revokeRole(role, account); } /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been revoked `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. * * May emit a {RoleRevoked} event. */ function renounceRole(bytes32 role, address account) public virtual override { require(account == _msgSender(), "AccessControl: can only renounce roles for self"); _revokeRole(role, account); } /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. Note that unlike {grantRole}, this function doesn't perform any * checks on the calling account. * * May emit a {RoleGranted} event. * * [WARNING] * ==== * This function should only be called from the constructor when setting * up the initial roles for the system. * * Using this function in any other way is effectively circumventing the admin * system imposed by {AccessControl}. * ==== * * NOTE: This function is deprecated in favor of {_grantRole}. */ function _setupRole(bytes32 role, address account) internal virtual { _grantRole(role, account); } /** * @dev Sets `adminRole` as ``role``'s admin role. * * Emits a {RoleAdminChanged} event. */ function _setRoleAdmin(bytes32 role, bytes32 adminRole) internal virtual { bytes32 previousAdminRole = getRoleAdmin(role); _roles[role].adminRole = adminRole; emit RoleAdminChanged(role, previousAdminRole, adminRole); } /** * @dev Grants `role` to `account`. * * Internal function without access restriction. * * May emit a {RoleGranted} event. */ function _grantRole(bytes32 role, address account) internal virtual { if (!hasRole(role, account)) { _roles[role].members[account] = true; emit RoleGranted(role, account, _msgSender()); } } /** * @dev Revokes `role` from `account`. * * Internal function without access restriction. * * May emit a {RoleRevoked} event. */ function _revokeRole(bytes32 role, address account) internal virtual { if (hasRole(role, account)) { _roles[role].members[account] = false; emit RoleRevoked(role, account, _msgSender()); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (access/AccessControlEnumerable.sol) pragma solidity ^0.8.0; import "./IAccessControlEnumerable.sol"; import "./AccessControl.sol"; import "../utils/structs/EnumerableSet.sol"; /** * @dev Extension of {AccessControl} that allows enumerating the members of each role. */ abstract contract AccessControlEnumerable is IAccessControlEnumerable, AccessControl { using EnumerableSet for EnumerableSet.AddressSet; mapping(bytes32 => EnumerableSet.AddressSet) private _roleMembers; /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IAccessControlEnumerable).interfaceId || super.supportsInterface(interfaceId); } /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) public view virtual override returns (address) { return _roleMembers[role].at(index); } /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) public view virtual override returns (uint256) { return _roleMembers[role].length(); } /** * @dev Overload {_grantRole} to track enumerable memberships */ function _grantRole(bytes32 role, address account) internal virtual override { super._grantRole(role, account); _roleMembers[role].add(account); } /** * @dev Overload {_revokeRole} to track enumerable memberships */ function _revokeRole(bytes32 role, address account) internal virtual override { super._revokeRole(role, account); _roleMembers[role].remove(account); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControl.sol) pragma solidity ^0.8.0; /** * @dev External interface of AccessControl declared to support ERC165 detection. */ interface IAccessControl { /** * @dev Emitted when `newAdminRole` is set as ``role``'s admin role, replacing `previousAdminRole` * * `DEFAULT_ADMIN_ROLE` is the starting admin for all roles, despite * {RoleAdminChanged} not being emitted signaling this. * * _Available since v3.1._ */ event RoleAdminChanged(bytes32 indexed role, bytes32 indexed previousAdminRole, bytes32 indexed newAdminRole); /** * @dev Emitted when `account` is granted `role`. * * `sender` is the account that originated the contract call, an admin role * bearer except when using {AccessControl-_setupRole}. */ event RoleGranted(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Emitted when `account` is revoked `role`. * * `sender` is the account that originated the contract call: * - if using `revokeRole`, it is the admin role bearer * - if using `renounceRole`, it is the role bearer (i.e. `account`) */ event RoleRevoked(bytes32 indexed role, address indexed account, address indexed sender); /** * @dev Returns `true` if `account` has been granted `role`. */ function hasRole(bytes32 role, address account) external view returns (bool); /** * @dev Returns the admin role that controls `role`. See {grantRole} and * {revokeRole}. * * To change a role's admin, use {AccessControl-_setRoleAdmin}. */ function getRoleAdmin(bytes32 role) external view returns (bytes32); /** * @dev Grants `role` to `account`. * * If `account` had not been already granted `role`, emits a {RoleGranted} * event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function grantRole(bytes32 role, address account) external; /** * @dev Revokes `role` from `account`. * * If `account` had been granted `role`, emits a {RoleRevoked} event. * * Requirements: * * - the caller must have ``role``'s admin role. */ function revokeRole(bytes32 role, address account) external; /** * @dev Revokes `role` from the calling account. * * Roles are often managed via {grantRole} and {revokeRole}: this function's * purpose is to provide a mechanism for accounts to lose their privileges * if they are compromised (such as when a trusted device is misplaced). * * If the calling account had been granted `role`, emits a {RoleRevoked} * event. * * Requirements: * * - the caller must be `account`. */ function renounceRole(bytes32 role, address account) external; }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (access/IAccessControlEnumerable.sol) pragma solidity ^0.8.0; import "./IAccessControl.sol"; /** * @dev External interface of AccessControlEnumerable declared to support ERC165 detection. */ interface IAccessControlEnumerable is IAccessControl { /** * @dev Returns one of the accounts that have `role`. `index` must be a * value between 0 and {getRoleMemberCount}, non-inclusive. * * Role bearers are not sorted in any particular way, and their ordering may * change at any point. * * WARNING: When using {getRoleMember} and {getRoleMemberCount}, make sure * you perform all queries on the same block. See the following * https://forum.openzeppelin.com/t/iterating-over-elements-on-enumerableset-in-openzeppelin-contracts/2296[forum post] * for more information. */ function getRoleMember(bytes32 role, uint256 index) external view returns (address); /** * @dev Returns the number of accounts that have `role`. Can be used * together with {getRoleMember} to enumerate all bearers of a role. */ function getRoleMemberCount(bytes32 role) external view returns (uint256); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (access/Ownable.sol) pragma solidity ^0.8.0; import "../utils/Context.sol"; /** * @dev Contract module which provides a basic access control mechanism, where * there is an account (an owner) that can be granted exclusive access to * specific functions. * * By default, the owner account will be the one that deploys the contract. This * can later be changed with {transferOwnership}. * * This module is used through inheritance. It will make available the modifier * `onlyOwner`, which can be applied to your functions to restrict their use to * the owner. */ abstract contract Ownable is Context { address private _owner; event OwnershipTransferred(address indexed previousOwner, address indexed newOwner); /** * @dev Initializes the contract setting the deployer as the initial owner. */ constructor() { _transferOwnership(_msgSender()); } /** * @dev Throws if called by any account other than the owner. */ modifier onlyOwner() { _checkOwner(); _; } /** * @dev Returns the address of the current owner. */ function owner() public view virtual returns (address) { return _owner; } /** * @dev Throws if the sender is not the owner. */ function _checkOwner() internal view virtual { require(owner() == _msgSender(), "Ownable: caller is not the owner"); } /** * @dev Leaves the contract without owner. It will not be possible to call * `onlyOwner` functions. Can only be called by the current owner. * * NOTE: Renouncing ownership will leave the contract without an owner, * thereby disabling any functionality that is only available to the owner. */ function renounceOwnership() public virtual onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Can only be called by the current owner. */ function transferOwnership(address newOwner) public virtual onlyOwner { require(newOwner != address(0), "Ownable: new owner is the zero address"); _transferOwnership(newOwner); } /** * @dev Transfers ownership of the contract to a new account (`newOwner`). * Internal function without access restriction. */ function _transferOwnership(address newOwner) internal virtual { address oldOwner = _owner; _owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/ERC20.sol) pragma solidity ^0.8.0; import "./IERC20.sol"; import "./extensions/IERC20Metadata.sol"; import "../../utils/Context.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * For a generic mechanism see {ERC20PresetMinterPauser}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. * * Finally, the non-standard {decreaseAllowance} and {increaseAllowance} * functions have been added to mitigate the well-known issues around setting * allowances. See {IERC20-approve}. */ contract ERC20 is Context, IERC20, IERC20Metadata { mapping(address => uint256) private _balances; mapping(address => mapping(address => uint256)) private _allowances; uint256 private _totalSupply; string private _name; string private _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor(string memory name_, string memory symbol_) { _name = name_; _symbol = symbol_; } /** * @dev Returns the name of the token. */ function name() public view virtual override returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual override returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual override returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual override returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual override returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `amount`. */ function transfer(address to, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _transfer(owner, to, amount); return true; } /** * @dev See {IERC20-allowance}. */ function allowance(address owner, address spender) public view virtual override returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `amount` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve(address spender, uint256 amount) public virtual override returns (bool) { address owner = _msgSender(); _approve(owner, spender, amount); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. * - the caller must have allowance for ``from``'s tokens of at least * `amount`. */ function transferFrom(address from, address to, uint256 amount) public virtual override returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, amount); _transfer(from, to, amount); return true; } /** * @dev Atomically increases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. */ function increaseAllowance(address spender, uint256 addedValue) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, allowance(owner, spender) + addedValue); return true; } /** * @dev Atomically decreases the allowance granted to `spender` by the caller. * * This is an alternative to {approve} that can be used as a mitigation for * problems described in {IERC20-approve}. * * Emits an {Approval} event indicating the updated allowance. * * Requirements: * * - `spender` cannot be the zero address. * - `spender` must have allowance for the caller of at least * `subtractedValue`. */ function decreaseAllowance(address spender, uint256 subtractedValue) public virtual returns (bool) { address owner = _msgSender(); uint256 currentAllowance = allowance(owner, spender); require(currentAllowance >= subtractedValue, "ERC20: decreased allowance below zero"); unchecked { _approve(owner, spender, currentAllowance - subtractedValue); } return true; } /** * @dev Moves `amount` of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * Requirements: * * - `from` cannot be the zero address. * - `to` cannot be the zero address. * - `from` must have a balance of at least `amount`. */ function _transfer(address from, address to, uint256 amount) internal virtual { require(from != address(0), "ERC20: transfer from the zero address"); require(to != address(0), "ERC20: transfer to the zero address"); _beforeTokenTransfer(from, to, amount); uint256 fromBalance = _balances[from]; require(fromBalance >= amount, "ERC20: transfer amount exceeds balance"); unchecked { _balances[from] = fromBalance - amount; // Overflow not possible: the sum of all balances is capped by totalSupply, and the sum is preserved by // decrementing then incrementing. _balances[to] += amount; } emit Transfer(from, to, amount); _afterTokenTransfer(from, to, amount); } /** @dev Creates `amount` tokens and assigns them to `account`, increasing * the total supply. * * Emits a {Transfer} event with `from` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. */ function _mint(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: mint to the zero address"); _beforeTokenTransfer(address(0), account, amount); _totalSupply += amount; unchecked { // Overflow not possible: balance + amount is at most totalSupply + amount, which is checked above. _balances[account] += amount; } emit Transfer(address(0), account, amount); _afterTokenTransfer(address(0), account, amount); } /** * @dev Destroys `amount` tokens from `account`, reducing the * total supply. * * Emits a {Transfer} event with `to` set to the zero address. * * Requirements: * * - `account` cannot be the zero address. * - `account` must have at least `amount` tokens. */ function _burn(address account, uint256 amount) internal virtual { require(account != address(0), "ERC20: burn from the zero address"); _beforeTokenTransfer(account, address(0), amount); uint256 accountBalance = _balances[account]; require(accountBalance >= amount, "ERC20: burn amount exceeds balance"); unchecked { _balances[account] = accountBalance - amount; // Overflow not possible: amount <= accountBalance <= totalSupply. _totalSupply -= amount; } emit Transfer(account, address(0), amount); _afterTokenTransfer(account, address(0), amount); } /** * @dev Sets `amount` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. */ function _approve(address owner, address spender, uint256 amount) internal virtual { require(owner != address(0), "ERC20: approve from the zero address"); require(spender != address(0), "ERC20: approve to the zero address"); _allowances[owner][spender] = amount; emit Approval(owner, spender, amount); } /** * @dev Updates `owner` s allowance for `spender` based on spent `amount`. * * Does not update the allowance amount in case of infinite allowance. * Revert if not enough allowance is available. * * Might emit an {Approval} event. */ function _spendAllowance(address owner, address spender, uint256 amount) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { require(currentAllowance >= amount, "ERC20: insufficient allowance"); unchecked { _approve(owner, spender, currentAllowance - amount); } } } /** * @dev Hook that is called before any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * will be transferred to `to`. * - when `from` is zero, `amount` tokens will be minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens will be burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _beforeTokenTransfer(address from, address to, uint256 amount) internal virtual {} /** * @dev Hook that is called after any transfer of tokens. This includes * minting and burning. * * Calling conditions: * * - when `from` and `to` are both non-zero, `amount` of ``from``'s tokens * has been transferred to `to`. * - when `from` is zero, `amount` tokens have been minted for `to`. * - when `to` is zero, `amount` of ``from``'s tokens have been burned. * - `from` and `to` are never both zero. * * To learn more about hooks, head to xref:ROOT:extending-contracts.adoc#using-hooks[Using Hooks]. */ function _afterTokenTransfer(address from, address to, uint256 amount) internal virtual {} }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.5.0) (token/ERC20/extensions/ERC20Burnable.sol) pragma solidity ^0.8.0; import "../ERC20.sol"; import "../../../utils/Context.sol"; /** * @dev Extension of {ERC20} that allows token holders to destroy both their own * tokens and those that they have an allowance for, in a way that can be * recognized off-chain (via event analysis). */ abstract contract ERC20Burnable is Context, ERC20 { /** * @dev Destroys `amount` tokens from the caller. * * See {ERC20-_burn}. */ function burn(uint256 amount) public virtual { _burn(_msgSender(), amount); } /** * @dev Destroys `amount` tokens from `account`, deducting from the caller's * allowance. * * See {ERC20-_burn} and {ERC20-allowance}. * * Requirements: * * - the caller must have allowance for ``accounts``'s tokens of at least * `amount`. */ function burnFrom(address account, uint256 amount) public virtual { _spendAllowance(account, _msgSender(), amount); _burn(account, amount); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.0; import "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. * * _Available since v4.1._ */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the amount of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the amount of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves `amount` tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 amount) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets `amount` as the allowance of `spender` over the caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 amount) external returns (bool); /** * @dev Moves `amount` tokens from `from` to `to` using the * allowance mechanism. `amount` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 amount) external returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/Context.sol) pragma solidity ^0.8.0; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/ERC165.sol) pragma solidity ^0.8.0; import "./IERC165.sol"; /** * @dev Implementation of the {IERC165} interface. * * Contracts that want to implement ERC165 should inherit from this contract and override {supportsInterface} to check * for the additional interface id that will be supported. For example: * * ```solidity * function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { * return interfaceId == type(MyInterface).interfaceId || super.supportsInterface(interfaceId); * } * ``` * * Alternatively, {ERC165Storage} provides an easier to use but more expensive implementation. */ abstract contract ERC165 is IERC165 { /** * @dev See {IERC165-supportsInterface}. */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC165).interfaceId; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts v4.4.1 (utils/introspection/IERC165.sol) pragma solidity ^0.8.0; /** * @dev Interface of the ERC165 standard, as defined in the * https://eips.ethereum.org/EIPS/eip-165[EIP]. * * Implementers can declare support of contract interfaces, which can then be * queried by others ({ERC165Checker}). * * For an implementation, see {ERC165}. */ interface IERC165 { /** * @dev Returns true if this contract implements the interface defined by * `interfaceId`. See the corresponding * https://eips.ethereum.org/EIPS/eip-165#how-interfaces-are-identified[EIP section] * to learn more about how these ids are created. * * This function call must use less than 30 000 gas. */ function supportsInterface(bytes4 interfaceId) external view returns (bool); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/math/Math.sol) pragma solidity ^0.8.0; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { enum Rounding { Down, // Toward negative infinity Up, // Toward infinity Zero // Toward zero } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds up instead * of rounding down. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or denominator == 0 * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) * with further edits by Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. require(denominator > prod1, "Math: mulDiv overflow"); /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. Always >= 1. // See https://cs.stackexchange.com/q/138556/92363. // Does not overflow because the denominator cannot be zero at this stage in the function. uint256 twos = denominator & (~denominator + 1); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (rounding == Rounding.Up && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded down. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (rounding == Rounding.Up && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2, rounded down, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (rounding == Rounding.Up && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10, rounded down, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (rounding == Rounding.Up && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256, rounded down, of a positive value. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (rounding == Rounding.Up && 1 << (result << 3) < value ? 1 : 0); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.8.0) (utils/math/SignedMath.sol) pragma solidity ^0.8.0; /** * @dev Standard signed math utilities missing in the Solidity language. */ library SignedMath { /** * @dev Returns the largest of two signed numbers. */ function max(int256 a, int256 b) internal pure returns (int256) { return a > b ? a : b; } /** * @dev Returns the smallest of two signed numbers. */ function min(int256 a, int256 b) internal pure returns (int256) { return a < b ? a : b; } /** * @dev Returns the average of two signed numbers without overflow. * The result is rounded towards zero. */ function average(int256 a, int256 b) internal pure returns (int256) { // Formula from the book "Hacker's Delight" int256 x = (a & b) + ((a ^ b) >> 1); return x + (int256(uint256(x) >> 255) & (a ^ b)); } /** * @dev Returns the absolute unsigned value of a signed value. */ function abs(int256 n) internal pure returns (uint256) { unchecked { // must be unchecked in order to support `n = type(int256).min` return uint256(n >= 0 ? n : -n); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/Strings.sol) pragma solidity ^0.8.0; import "./math/Math.sol"; import "./math/SignedMath.sol"; /** * @dev String operations. */ library Strings { bytes16 private constant _SYMBOLS = "0123456789abcdef"; uint8 private constant _ADDRESS_LENGTH = 20; /** * @dev Converts a `uint256` to its ASCII `string` decimal representation. */ function toString(uint256 value) internal pure returns (string memory) { unchecked { uint256 length = Math.log10(value) + 1; string memory buffer = new string(length); uint256 ptr; /// @solidity memory-safe-assembly assembly { ptr := add(buffer, add(32, length)) } while (true) { ptr--; /// @solidity memory-safe-assembly assembly { mstore8(ptr, byte(mod(value, 10), _SYMBOLS)) } value /= 10; if (value == 0) break; } return buffer; } } /** * @dev Converts a `int256` to its ASCII `string` decimal representation. */ function toString(int256 value) internal pure returns (string memory) { return string(abi.encodePacked(value < 0 ? "-" : "", toString(SignedMath.abs(value)))); } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation. */ function toHexString(uint256 value) internal pure returns (string memory) { unchecked { return toHexString(value, Math.log256(value) + 1); } } /** * @dev Converts a `uint256` to its ASCII `string` hexadecimal representation with fixed length. */ function toHexString(uint256 value, uint256 length) internal pure returns (string memory) { bytes memory buffer = new bytes(2 * length + 2); buffer[0] = "0"; buffer[1] = "x"; for (uint256 i = 2 * length + 1; i > 1; --i) { buffer[i] = _SYMBOLS[value & 0xf]; value >>= 4; } require(value == 0, "Strings: hex length insufficient"); return string(buffer); } /** * @dev Converts an `address` with fixed length of 20 bytes to its not checksummed ASCII `string` hexadecimal representation. */ function toHexString(address addr) internal pure returns (string memory) { return toHexString(uint256(uint160(addr)), _ADDRESS_LENGTH); } /** * @dev Returns true if the two strings are equal. */ function equal(string memory a, string memory b) internal pure returns (bool) { return keccak256(bytes(a)) == keccak256(bytes(b)); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v4.9.0) (utils/structs/EnumerableSet.sol) // This file was procedurally generated from scripts/generate/templates/EnumerableSet.js. pragma solidity ^0.8.0; /** * @dev Library for managing * https://en.wikipedia.org/wiki/Set_(abstract_data_type)[sets] of primitive * types. * * Sets have the following properties: * * - Elements are added, removed, and checked for existence in constant time * (O(1)). * - Elements are enumerated in O(n). No guarantees are made on the ordering. * * ```solidity * contract Example { * // Add the library methods * using EnumerableSet for EnumerableSet.AddressSet; * * // Declare a set state variable * EnumerableSet.AddressSet private mySet; * } * ``` * * As of v3.3.0, sets of type `bytes32` (`Bytes32Set`), `address` (`AddressSet`) * and `uint256` (`UintSet`) are supported. * * [WARNING] * ==== * Trying to delete such a structure from storage will likely result in data corruption, rendering the structure * unusable. * See https://github.com/ethereum/solidity/pull/11843[ethereum/solidity#11843] for more info. * * In order to clean an EnumerableSet, you can either remove all elements one by one or create a fresh instance using an * array of EnumerableSet. * ==== */ library EnumerableSet { // To implement this library for multiple types with as little code // repetition as possible, we write it in terms of a generic Set type with // bytes32 values. // The Set implementation uses private functions, and user-facing // implementations (such as AddressSet) are just wrappers around the // underlying Set. // This means that we can only create new EnumerableSets for types that fit // in bytes32. struct Set { // Storage of set values bytes32[] _values; // Position of the value in the `values` array, plus 1 because index 0 // means a value is not in the set. mapping(bytes32 => uint256) _indexes; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function _add(Set storage set, bytes32 value) private returns (bool) { if (!_contains(set, value)) { set._values.push(value); // The value is stored at length-1, but we add 1 to all indexes // and use 0 as a sentinel value set._indexes[value] = set._values.length; return true; } else { return false; } } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function _remove(Set storage set, bytes32 value) private returns (bool) { // We read and store the value's index to prevent multiple reads from the same storage slot uint256 valueIndex = set._indexes[value]; if (valueIndex != 0) { // Equivalent to contains(set, value) // To delete an element from the _values array in O(1), we swap the element to delete with the last one in // the array, and then remove the last element (sometimes called as 'swap and pop'). // This modifies the order of the array, as noted in {at}. uint256 toDeleteIndex = valueIndex - 1; uint256 lastIndex = set._values.length - 1; if (lastIndex != toDeleteIndex) { bytes32 lastValue = set._values[lastIndex]; // Move the last value to the index where the value to delete is set._values[toDeleteIndex] = lastValue; // Update the index for the moved value set._indexes[lastValue] = valueIndex; // Replace lastValue's index to valueIndex } // Delete the slot where the moved value was stored set._values.pop(); // Delete the index for the deleted slot delete set._indexes[value]; return true; } else { return false; } } /** * @dev Returns true if the value is in the set. O(1). */ function _contains(Set storage set, bytes32 value) private view returns (bool) { return set._indexes[value] != 0; } /** * @dev Returns the number of values on the set. O(1). */ function _length(Set storage set) private view returns (uint256) { return set._values.length; } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function _at(Set storage set, uint256 index) private view returns (bytes32) { return set._values[index]; } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function _values(Set storage set) private view returns (bytes32[] memory) { return set._values; } // Bytes32Set struct Bytes32Set { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _add(set._inner, value); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(Bytes32Set storage set, bytes32 value) internal returns (bool) { return _remove(set._inner, value); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(Bytes32Set storage set, bytes32 value) internal view returns (bool) { return _contains(set._inner, value); } /** * @dev Returns the number of values in the set. O(1). */ function length(Bytes32Set storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(Bytes32Set storage set, uint256 index) internal view returns (bytes32) { return _at(set._inner, index); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(Bytes32Set storage set) internal view returns (bytes32[] memory) { bytes32[] memory store = _values(set._inner); bytes32[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // AddressSet struct AddressSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(AddressSet storage set, address value) internal returns (bool) { return _add(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(AddressSet storage set, address value) internal returns (bool) { return _remove(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(AddressSet storage set, address value) internal view returns (bool) { return _contains(set._inner, bytes32(uint256(uint160(value)))); } /** * @dev Returns the number of values in the set. O(1). */ function length(AddressSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(AddressSet storage set, uint256 index) internal view returns (address) { return address(uint160(uint256(_at(set._inner, index)))); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(AddressSet storage set) internal view returns (address[] memory) { bytes32[] memory store = _values(set._inner); address[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } // UintSet struct UintSet { Set _inner; } /** * @dev Add a value to a set. O(1). * * Returns true if the value was added to the set, that is if it was not * already present. */ function add(UintSet storage set, uint256 value) internal returns (bool) { return _add(set._inner, bytes32(value)); } /** * @dev Removes a value from a set. O(1). * * Returns true if the value was removed from the set, that is if it was * present. */ function remove(UintSet storage set, uint256 value) internal returns (bool) { return _remove(set._inner, bytes32(value)); } /** * @dev Returns true if the value is in the set. O(1). */ function contains(UintSet storage set, uint256 value) internal view returns (bool) { return _contains(set._inner, bytes32(value)); } /** * @dev Returns the number of values in the set. O(1). */ function length(UintSet storage set) internal view returns (uint256) { return _length(set._inner); } /** * @dev Returns the value stored at position `index` in the set. O(1). * * Note that there are no guarantees on the ordering of values inside the * array, and it may change when more values are added or removed. * * Requirements: * * - `index` must be strictly less than {length}. */ function at(UintSet storage set, uint256 index) internal view returns (uint256) { return uint256(_at(set._inner, index)); } /** * @dev Return the entire set in an array * * WARNING: This operation will copy the entire storage to memory, which can be quite expensive. This is designed * to mostly be used by view accessors that are queried without any gas fees. Developers should keep in mind that * this function has an unbounded cost, and using it as part of a state-changing function may render the function * uncallable if the set grows to a point where copying to memory consumes too much gas to fit in a block. */ function values(UintSet storage set) internal view returns (uint256[] memory) { bytes32[] memory store = _values(set._inner); uint256[] memory result; /// @solidity memory-safe-assembly assembly { result := store } return result; } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; // Common.sol // // Common mathematical functions needed by both SD59x18 and UD60x18. Note that these global functions do not // always operate with SD59x18 and UD60x18 numbers. /*////////////////////////////////////////////////////////////////////////// CUSTOM ERRORS //////////////////////////////////////////////////////////////////////////*/ /// @notice Thrown when the resultant value in {mulDiv} overflows uint256. error PRBMath_MulDiv_Overflow(uint256 x, uint256 y, uint256 denominator); /// @notice Thrown when the resultant value in {mulDiv18} overflows uint256. error PRBMath_MulDiv18_Overflow(uint256 x, uint256 y); /// @notice Thrown when one of the inputs passed to {mulDivSigned} is `type(int256).min`. error PRBMath_MulDivSigned_InputTooSmall(); /// @notice Thrown when the resultant value in {mulDivSigned} overflows int256. error PRBMath_MulDivSigned_Overflow(int256 x, int256 y); /*////////////////////////////////////////////////////////////////////////// CONSTANTS //////////////////////////////////////////////////////////////////////////*/ /// @dev The maximum value a uint128 number can have. uint128 constant MAX_UINT128 = type(uint128).max; /// @dev The maximum value a uint40 number can have. uint40 constant MAX_UINT40 = type(uint40).max; /// @dev The unit number, which the decimal precision of the fixed-point types. uint256 constant UNIT = 1e18; /// @dev The unit number inverted mod 2^256. uint256 constant UNIT_INVERSE = 78156646155174841979727994598816262306175212592076161876661_508869554232690281; /// @dev The the largest power of two that divides the decimal value of `UNIT`. The logarithm of this value is the least significant /// bit in the binary representation of `UNIT`. uint256 constant UNIT_LPOTD = 262144; /*////////////////////////////////////////////////////////////////////////// FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the binary exponent of x using the binary fraction method. /// @dev Has to use 192.64-bit fixed-point numbers. See https://ethereum.stackexchange.com/a/96594/24693. /// @param x The exponent as an unsigned 192.64-bit fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function exp2(uint256 x) pure returns (uint256 result) { unchecked { // Start from 0.5 in the 192.64-bit fixed-point format. result = 0x800000000000000000000000000000000000000000000000; // The following logic multiplies the result by $\sqrt{2^{-i}}$ when the bit at position i is 1. Key points: // // 1. Intermediate results will not overflow, as the starting point is 2^191 and all magic factors are under 2^65. // 2. The rationale for organizing the if statements into groups of 8 is gas savings. If the result of performing // a bitwise AND operation between x and any value in the array [0x80; 0x40; 0x20; 0x10; 0x08; 0x04; 0x02; 0x01] is 1, // we know that `x & 0xFF` is also 1. if (x & 0xFF00000000000000 > 0) { if (x & 0x8000000000000000 > 0) { result = (result * 0x16A09E667F3BCC909) >> 64; } if (x & 0x4000000000000000 > 0) { result = (result * 0x1306FE0A31B7152DF) >> 64; } if (x & 0x2000000000000000 > 0) { result = (result * 0x1172B83C7D517ADCE) >> 64; } if (x & 0x1000000000000000 > 0) { result = (result * 0x10B5586CF9890F62A) >> 64; } if (x & 0x800000000000000 > 0) { result = (result * 0x1059B0D31585743AE) >> 64; } if (x & 0x400000000000000 > 0) { result = (result * 0x102C9A3E778060EE7) >> 64; } if (x & 0x200000000000000 > 0) { result = (result * 0x10163DA9FB33356D8) >> 64; } if (x & 0x100000000000000 > 0) { result = (result * 0x100B1AFA5ABCBED61) >> 64; } } if (x & 0xFF000000000000 > 0) { if (x & 0x80000000000000 > 0) { result = (result * 0x10058C86DA1C09EA2) >> 64; } if (x & 0x40000000000000 > 0) { result = (result * 0x1002C605E2E8CEC50) >> 64; } if (x & 0x20000000000000 > 0) { result = (result * 0x100162F3904051FA1) >> 64; } if (x & 0x10000000000000 > 0) { result = (result * 0x1000B175EFFDC76BA) >> 64; } if (x & 0x8000000000000 > 0) { result = (result * 0x100058BA01FB9F96D) >> 64; } if (x & 0x4000000000000 > 0) { result = (result * 0x10002C5CC37DA9492) >> 64; } if (x & 0x2000000000000 > 0) { result = (result * 0x1000162E525EE0547) >> 64; } if (x & 0x1000000000000 > 0) { result = (result * 0x10000B17255775C04) >> 64; } } if (x & 0xFF0000000000 > 0) { if (x & 0x800000000000 > 0) { result = (result * 0x1000058B91B5BC9AE) >> 64; } if (x & 0x400000000000 > 0) { result = (result * 0x100002C5C89D5EC6D) >> 64; } if (x & 0x200000000000 > 0) { result = (result * 0x10000162E43F4F831) >> 64; } if (x & 0x100000000000 > 0) { result = (result * 0x100000B1721BCFC9A) >> 64; } if (x & 0x80000000000 > 0) { result = (result * 0x10000058B90CF1E6E) >> 64; } if (x & 0x40000000000 > 0) { result = (result * 0x1000002C5C863B73F) >> 64; } if (x & 0x20000000000 > 0) { result = (result * 0x100000162E430E5A2) >> 64; } if (x & 0x10000000000 > 0) { result = (result * 0x1000000B172183551) >> 64; } } if (x & 0xFF00000000 > 0) { if (x & 0x8000000000 > 0) { result = (result * 0x100000058B90C0B49) >> 64; } if (x & 0x4000000000 > 0) { result = (result * 0x10000002C5C8601CC) >> 64; } if (x & 0x2000000000 > 0) { result = (result * 0x1000000162E42FFF0) >> 64; } if (x & 0x1000000000 > 0) { result = (result * 0x10000000B17217FBB) >> 64; } if (x & 0x800000000 > 0) { result = (result * 0x1000000058B90BFCE) >> 64; } if (x & 0x400000000 > 0) { result = (result * 0x100000002C5C85FE3) >> 64; } if (x & 0x200000000 > 0) { result = (result * 0x10000000162E42FF1) >> 64; } if (x & 0x100000000 > 0) { result = (result * 0x100000000B17217F8) >> 64; } } if (x & 0xFF000000 > 0) { if (x & 0x80000000 > 0) { result = (result * 0x10000000058B90BFC) >> 64; } if (x & 0x40000000 > 0) { result = (result * 0x1000000002C5C85FE) >> 64; } if (x & 0x20000000 > 0) { result = (result * 0x100000000162E42FF) >> 64; } if (x & 0x10000000 > 0) { result = (result * 0x1000000000B17217F) >> 64; } if (x & 0x8000000 > 0) { result = (result * 0x100000000058B90C0) >> 64; } if (x & 0x4000000 > 0) { result = (result * 0x10000000002C5C860) >> 64; } if (x & 0x2000000 > 0) { result = (result * 0x1000000000162E430) >> 64; } if (x & 0x1000000 > 0) { result = (result * 0x10000000000B17218) >> 64; } } if (x & 0xFF0000 > 0) { if (x & 0x800000 > 0) { result = (result * 0x1000000000058B90C) >> 64; } if (x & 0x400000 > 0) { result = (result * 0x100000000002C5C86) >> 64; } if (x & 0x200000 > 0) { result = (result * 0x10000000000162E43) >> 64; } if (x & 0x100000 > 0) { result = (result * 0x100000000000B1721) >> 64; } if (x & 0x80000 > 0) { result = (result * 0x10000000000058B91) >> 64; } if (x & 0x40000 > 0) { result = (result * 0x1000000000002C5C8) >> 64; } if (x & 0x20000 > 0) { result = (result * 0x100000000000162E4) >> 64; } if (x & 0x10000 > 0) { result = (result * 0x1000000000000B172) >> 64; } } if (x & 0xFF00 > 0) { if (x & 0x8000 > 0) { result = (result * 0x100000000000058B9) >> 64; } if (x & 0x4000 > 0) { result = (result * 0x10000000000002C5D) >> 64; } if (x & 0x2000 > 0) { result = (result * 0x1000000000000162E) >> 64; } if (x & 0x1000 > 0) { result = (result * 0x10000000000000B17) >> 64; } if (x & 0x800 > 0) { result = (result * 0x1000000000000058C) >> 64; } if (x & 0x400 > 0) { result = (result * 0x100000000000002C6) >> 64; } if (x & 0x200 > 0) { result = (result * 0x10000000000000163) >> 64; } if (x & 0x100 > 0) { result = (result * 0x100000000000000B1) >> 64; } } if (x & 0xFF > 0) { if (x & 0x80 > 0) { result = (result * 0x10000000000000059) >> 64; } if (x & 0x40 > 0) { result = (result * 0x1000000000000002C) >> 64; } if (x & 0x20 > 0) { result = (result * 0x10000000000000016) >> 64; } if (x & 0x10 > 0) { result = (result * 0x1000000000000000B) >> 64; } if (x & 0x8 > 0) { result = (result * 0x10000000000000006) >> 64; } if (x & 0x4 > 0) { result = (result * 0x10000000000000003) >> 64; } if (x & 0x2 > 0) { result = (result * 0x10000000000000001) >> 64; } if (x & 0x1 > 0) { result = (result * 0x10000000000000001) >> 64; } } // In the code snippet below, two operations are executed simultaneously: // // 1. The result is multiplied by $(2^n + 1)$, where $2^n$ represents the integer part, and the additional 1 // accounts for the initial guess of 0.5. This is achieved by subtracting from 191 instead of 192. // 2. The result is then converted to an unsigned 60.18-decimal fixed-point format. // // The underlying logic is based on the relationship $2^{191-ip} = 2^{ip} / 2^{191}$, where $ip$ denotes the, // integer part, $2^n$. result *= UNIT; result >>= (191 - (x >> 64)); } } /// @notice Finds the zero-based index of the first 1 in the binary representation of x. /// /// @dev See the note on "msb" in this Wikipedia article: https://en.wikipedia.org/wiki/Find_first_set /// /// Each step in this implementation is equivalent to this high-level code: /// /// ```solidity /// if (x >= 2 ** 128) { /// x >>= 128; /// result += 128; /// } /// ``` /// /// Where 128 is replaced with each respective power of two factor. See the full high-level implementation here: /// https://gist.github.com/PaulRBerg/f932f8693f2733e30c4d479e8e980948 /// /// The Yul instructions used below are: /// /// - "gt" is "greater than" /// - "or" is the OR bitwise operator /// - "shl" is "shift left" /// - "shr" is "shift right" /// /// @param x The uint256 number for which to find the index of the most significant bit. /// @return result The index of the most significant bit as a uint256. /// @custom:smtchecker abstract-function-nondet function msb(uint256 x) pure returns (uint256 result) { // 2^128 assembly ("memory-safe") { let factor := shl(7, gt(x, 0xFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^64 assembly ("memory-safe") { let factor := shl(6, gt(x, 0xFFFFFFFFFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^32 assembly ("memory-safe") { let factor := shl(5, gt(x, 0xFFFFFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^16 assembly ("memory-safe") { let factor := shl(4, gt(x, 0xFFFF)) x := shr(factor, x) result := or(result, factor) } // 2^8 assembly ("memory-safe") { let factor := shl(3, gt(x, 0xFF)) x := shr(factor, x) result := or(result, factor) } // 2^4 assembly ("memory-safe") { let factor := shl(2, gt(x, 0xF)) x := shr(factor, x) result := or(result, factor) } // 2^2 assembly ("memory-safe") { let factor := shl(1, gt(x, 0x3)) x := shr(factor, x) result := or(result, factor) } // 2^1 // No need to shift x any more. assembly ("memory-safe") { let factor := gt(x, 0x1) result := or(result, factor) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev Credits to Remco Bloemen under MIT license https://xn--2-umb.com/21/muldiv. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - The denominator must not be zero. /// - The result must fit in uint256. /// /// @param x The multiplicand as a uint256. /// @param y The multiplier as a uint256. /// @param denominator The divisor as a uint256. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function mulDiv(uint256 x, uint256 y, uint256 denominator) pure returns (uint256 result) { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512-bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { unchecked { return prod0 / denominator; } } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (prod1 >= denominator) { revert PRBMath_MulDiv_Overflow(x, y, denominator); } //////////////////////////////////////////////////////////////////////////// // 512 by 256 division //////////////////////////////////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly ("memory-safe") { // Compute remainder using the mulmod Yul instruction. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512-bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } unchecked { // Calculate the largest power of two divisor of the denominator using the unary operator ~. This operation cannot overflow // because the denominator cannot be zero at this point in the function execution. The result is always >= 1. // For more detail, see https://cs.stackexchange.com/q/138556/92363. uint256 lpotdod = denominator & (~denominator + 1); uint256 flippedLpotdod; assembly ("memory-safe") { // Factor powers of two out of denominator. denominator := div(denominator, lpotdod) // Divide [prod1 prod0] by lpotdod. prod0 := div(prod0, lpotdod) // Get the flipped value `2^256 / lpotdod`. If the `lpotdod` is zero, the flipped value is one. // `sub(0, lpotdod)` produces the two's complement version of `lpotdod`, which is equivalent to flipping all the bits. // However, `div` interprets this value as an unsigned value: https://ethereum.stackexchange.com/q/147168/24693 flippedLpotdod := add(div(sub(0, lpotdod), lpotdod), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * flippedLpotdod; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also works // in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; } } /// @notice Calculates x*y÷1e18 with 512-bit precision. /// /// @dev A variant of {mulDiv} with constant folding, i.e. in which the denominator is hard coded to 1e18. /// /// Notes: /// - The body is purposely left uncommented; to understand how this works, see the documentation in {mulDiv}. /// - The result is rounded toward zero. /// - We take as an axiom that the result cannot be `MAX_UINT256` when x and y solve the following system of equations: /// /// $$ /// \begin{cases} /// x * y = MAX\_UINT256 * UNIT \\ /// (x * y) \% UNIT \geq \frac{UNIT}{2} /// \end{cases} /// $$ /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - The result must fit in uint256. /// /// @param x The multiplicand as an unsigned 60.18-decimal fixed-point number. /// @param y The multiplier as an unsigned 60.18-decimal fixed-point number. /// @return result The result as an unsigned 60.18-decimal fixed-point number. /// @custom:smtchecker abstract-function-nondet function mulDiv18(uint256 x, uint256 y) pure returns (uint256 result) { uint256 prod0; uint256 prod1; assembly ("memory-safe") { let mm := mulmod(x, y, not(0)) prod0 := mul(x, y) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } if (prod1 == 0) { unchecked { return prod0 / UNIT; } } if (prod1 >= UNIT) { revert PRBMath_MulDiv18_Overflow(x, y); } uint256 remainder; assembly ("memory-safe") { remainder := mulmod(x, y, UNIT) result := mul( or( div(sub(prod0, remainder), UNIT_LPOTD), mul(sub(prod1, gt(remainder, prod0)), add(div(sub(0, UNIT_LPOTD), UNIT_LPOTD), 1)) ), UNIT_INVERSE ) } } /// @notice Calculates x*y÷denominator with 512-bit precision. /// /// @dev This is an extension of {mulDiv} for signed numbers, which works by computing the signs and the absolute values separately. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {mulDiv}. /// - None of the inputs can be `type(int256).min`. /// - The result must fit in int256. /// /// @param x The multiplicand as an int256. /// @param y The multiplier as an int256. /// @param denominator The divisor as an int256. /// @return result The result as an int256. /// @custom:smtchecker abstract-function-nondet function mulDivSigned(int256 x, int256 y, int256 denominator) pure returns (int256 result) { if (x == type(int256).min || y == type(int256).min || denominator == type(int256).min) { revert PRBMath_MulDivSigned_InputTooSmall(); } // Get hold of the absolute values of x, y and the denominator. uint256 xAbs; uint256 yAbs; uint256 dAbs; unchecked { xAbs = x < 0 ? uint256(-x) : uint256(x); yAbs = y < 0 ? uint256(-y) : uint256(y); dAbs = denominator < 0 ? uint256(-denominator) : uint256(denominator); } // Compute the absolute value of x*y÷denominator. The result must fit in int256. uint256 resultAbs = mulDiv(xAbs, yAbs, dAbs); if (resultAbs > uint256(type(int256).max)) { revert PRBMath_MulDivSigned_Overflow(x, y); } // Get the signs of x, y and the denominator. uint256 sx; uint256 sy; uint256 sd; assembly ("memory-safe") { // "sgt" is the "signed greater than" assembly instruction and "sub(0,1)" is -1 in two's complement. sx := sgt(x, sub(0, 1)) sy := sgt(y, sub(0, 1)) sd := sgt(denominator, sub(0, 1)) } // XOR over sx, sy and sd. What this does is to check whether there are 1 or 3 negative signs in the inputs. // If there are, the result should be negative. Otherwise, it should be positive. unchecked { result = sx ^ sy ^ sd == 0 ? -int256(resultAbs) : int256(resultAbs); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - If x is not a perfect square, the result is rounded down. /// - Credits to OpenZeppelin for the explanations in comments below. /// /// @param x The uint256 number for which to calculate the square root. /// @return result The result as a uint256. /// @custom:smtchecker abstract-function-nondet function sqrt(uint256 x) pure returns (uint256 result) { if (x == 0) { return 0; } // For our first guess, we calculate the biggest power of 2 which is smaller than the square root of x. // // We know that the "msb" (most significant bit) of x is a power of 2 such that we have: // // $$ // msb(x) <= x <= 2*msb(x)$ // $$ // // We write $msb(x)$ as $2^k$, and we get: // // $$ // k = log_2(x) // $$ // // Thus, we can write the initial inequality as: // // $$ // 2^{log_2(x)} <= x <= 2*2^{log_2(x)+1} \\ // sqrt(2^k) <= sqrt(x) < sqrt(2^{k+1}) \\ // 2^{k/2} <= sqrt(x) < 2^{(k+1)/2} <= 2^{(k/2)+1} // $$ // // Consequently, $2^{log_2(x) /2} is a good first approximation of sqrt(x) with at least one correct bit. uint256 xAux = uint256(x); result = 1; if (xAux >= 2 ** 128) { xAux >>= 128; result <<= 64; } if (xAux >= 2 ** 64) { xAux >>= 64; result <<= 32; } if (xAux >= 2 ** 32) { xAux >>= 32; result <<= 16; } if (xAux >= 2 ** 16) { xAux >>= 16; result <<= 8; } if (xAux >= 2 ** 8) { xAux >>= 8; result <<= 4; } if (xAux >= 2 ** 4) { xAux >>= 4; result <<= 2; } if (xAux >= 2 ** 2) { result <<= 1; } // At this point, `result` is an estimation with at least one bit of precision. We know the true value has at // most 128 bits, since it is the square root of a uint256. Newton's method converges quadratically (precision // doubles at every iteration). We thus need at most 7 iteration to turn our partial result with one bit of // precision into the expected uint128 result. unchecked { result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; result = (result + x / result) >> 1; // If x is not a perfect square, round the result toward zero. uint256 roundedResult = x / result; if (result >= roundedResult) { result = roundedResult; } } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as CastingErrors; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD1x18 } from "./ValueType.sol"; /// @notice Casts an SD1x18 number into SD59x18. /// @dev There is no overflow check because the domain of SD1x18 is a subset of SD59x18. function intoSD59x18(SD1x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(SD1x18.unwrap(x))); } /// @notice Casts an SD1x18 number into UD2x18. /// - x must be positive. function intoUD2x18(SD1x18 x) pure returns (UD2x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD2x18_Underflow(x); } result = UD2x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD1x18 x) pure returns (UD60x18 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUD60x18_Underflow(x); } result = UD60x18.wrap(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD1x18 x) pure returns (uint256 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint256_Underflow(x); } result = uint256(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint128. /// @dev Requirements: /// - x must be positive. function intoUint128(SD1x18 x) pure returns (uint128 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint128_Underflow(x); } result = uint128(uint64(xInt)); } /// @notice Casts an SD1x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD1x18 x) pure returns (uint40 result) { int64 xInt = SD1x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Underflow(x); } if (xInt > int64(uint64(Common.MAX_UINT40))) { revert CastingErrors.PRBMath_SD1x18_ToUint40_Overflow(x); } result = uint40(uint64(xInt)); } /// @notice Alias for {wrap}. function sd1x18(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); } /// @notice Unwraps an SD1x18 number into int64. function unwrap(SD1x18 x) pure returns (int64 result) { result = SD1x18.unwrap(x); } /// @notice Wraps an int64 number into SD1x18. function wrap(int64 x) pure returns (SD1x18 result) { result = SD1x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @dev Euler's number as an SD1x18 number. SD1x18 constant E = SD1x18.wrap(2_718281828459045235); /// @dev The maximum value an SD1x18 number can have. int64 constant uMAX_SD1x18 = 9_223372036854775807; SD1x18 constant MAX_SD1x18 = SD1x18.wrap(uMAX_SD1x18); /// @dev The maximum value an SD1x18 number can have. int64 constant uMIN_SD1x18 = -9_223372036854775808; SD1x18 constant MIN_SD1x18 = SD1x18.wrap(uMIN_SD1x18); /// @dev PI as an SD1x18 number. SD1x18 constant PI = SD1x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD1x18. SD1x18 constant UNIT = SD1x18.wrap(1e18); int256 constant uUNIT = 1e18;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD1x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD2x18. error PRBMath_SD1x18_ToUD2x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in UD60x18. error PRBMath_SD1x18_ToUD60x18_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint128. error PRBMath_SD1x18_ToUint128_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint256. error PRBMath_SD1x18_ToUint256_Underflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Overflow(SD1x18 x); /// @notice Thrown when trying to cast a SD1x18 number that doesn't fit in uint40. error PRBMath_SD1x18_ToUint40_Underflow(SD1x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The signed 1.18-decimal fixed-point number representation, which can have up to 1 digit and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int64. This is useful when end users want to use int64 to save gas, e.g. with tight variable packing in contract /// storage. type SD1x18 is int64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD59x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD1x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18, uMIN_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Casts an SD59x18 number into int256. /// @dev This is basically a functional alias for {unwrap}. function intoInt256(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Casts an SD59x18 number into SD1x18. /// @dev Requirements: /// - x must be greater than or equal to `uMIN_SD1x18`. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(SD59x18 x) pure returns (SD1x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < uMIN_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Underflow(x); } if (xInt > uMAX_SD1x18) { revert CastingErrors.PRBMath_SD59x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xInt)); } /// @notice Casts an SD59x18 number into UD2x18. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(SD59x18 x) pure returns (UD2x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Underflow(x); } if (xInt > int256(uint256(uMAX_UD2x18))) { revert CastingErrors.PRBMath_SD59x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(uint256(xInt))); } /// @notice Casts an SD59x18 number into UD60x18. /// @dev Requirements: /// - x must be positive. function intoUD60x18(SD59x18 x) pure returns (UD60x18 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUD60x18_Underflow(x); } result = UD60x18.wrap(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint256. /// @dev Requirements: /// - x must be positive. function intoUint256(SD59x18 x) pure returns (uint256 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint256_Underflow(x); } result = uint256(xInt); } /// @notice Casts an SD59x18 number into uint128. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `uMAX_UINT128`. function intoUint128(SD59x18 x) pure returns (uint128 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Underflow(x); } if (xInt > int256(uint256(MAX_UINT128))) { revert CastingErrors.PRBMath_SD59x18_IntoUint128_Overflow(x); } result = uint128(uint256(xInt)); } /// @notice Casts an SD59x18 number into uint40. /// @dev Requirements: /// - x must be positive. /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(SD59x18 x) pure returns (uint40 result) { int256 xInt = SD59x18.unwrap(x); if (xInt < 0) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Underflow(x); } if (xInt > int256(uint256(MAX_UINT40))) { revert CastingErrors.PRBMath_SD59x18_IntoUint40_Overflow(x); } result = uint40(uint256(xInt)); } /// @notice Alias for {wrap}. function sd(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Alias for {wrap}. function sd59x18(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); } /// @notice Unwraps an SD59x18 number into int256. function unwrap(SD59x18 x) pure returns (int256 result) { result = SD59x18.unwrap(x); } /// @notice Wraps an int256 number into SD59x18. function wrap(int256 x) pure returns (SD59x18 result) { result = SD59x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as an SD59x18 number. SD59x18 constant E = SD59x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. int256 constant uEXP_MAX_INPUT = 133_084258667509499440; SD59x18 constant EXP_MAX_INPUT = SD59x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. int256 constant uEXP2_MAX_INPUT = 192e18 - 1; SD59x18 constant EXP2_MAX_INPUT = SD59x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. int256 constant uHALF_UNIT = 0.5e18; SD59x18 constant HALF_UNIT = SD59x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as an SD59x18 number. int256 constant uLOG2_10 = 3_321928094887362347; SD59x18 constant LOG2_10 = SD59x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as an SD59x18 number. int256 constant uLOG2_E = 1_442695040888963407; SD59x18 constant LOG2_E = SD59x18.wrap(uLOG2_E); /// @dev The maximum value an SD59x18 number can have. int256 constant uMAX_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_792003956564819967; SD59x18 constant MAX_SD59x18 = SD59x18.wrap(uMAX_SD59x18); /// @dev The maximum whole value an SD59x18 number can have. int256 constant uMAX_WHOLE_SD59x18 = 57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MAX_WHOLE_SD59x18 = SD59x18.wrap(uMAX_WHOLE_SD59x18); /// @dev The minimum value an SD59x18 number can have. int256 constant uMIN_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_792003956564819968; SD59x18 constant MIN_SD59x18 = SD59x18.wrap(uMIN_SD59x18); /// @dev The minimum whole value an SD59x18 number can have. int256 constant uMIN_WHOLE_SD59x18 = -57896044618658097711785492504343953926634992332820282019728_000000000000000000; SD59x18 constant MIN_WHOLE_SD59x18 = SD59x18.wrap(uMIN_WHOLE_SD59x18); /// @dev PI as an SD59x18 number. SD59x18 constant PI = SD59x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of SD59x18. int256 constant uUNIT = 1e18; SD59x18 constant UNIT = SD59x18.wrap(1e18); /// @dev The unit number squared. int256 constant uUNIT_SQUARED = 1e36; SD59x18 constant UNIT_SQUARED = SD59x18.wrap(uUNIT_SQUARED); /// @dev Zero as an SD59x18 number. SD59x18 constant ZERO = SD59x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { SD59x18 } from "./ValueType.sol"; /// @notice Thrown when taking the absolute value of `MIN_SD59x18`. error PRBMath_SD59x18_Abs_MinSD59x18(); /// @notice Thrown when ceiling a number overflows SD59x18. error PRBMath_SD59x18_Ceil_Overflow(SD59x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows SD59x18. error PRBMath_SD59x18_Convert_Overflow(int256 x); /// @notice Thrown when converting a basic integer to the fixed-point format underflows SD59x18. error PRBMath_SD59x18_Convert_Underflow(int256 x); /// @notice Thrown when dividing two numbers and one of them is `MIN_SD59x18`. error PRBMath_SD59x18_Div_InputTooSmall(); /// @notice Thrown when dividing two numbers and one of the intermediary unsigned results overflows SD59x18. error PRBMath_SD59x18_Div_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_SD59x18_Exp_InputTooBig(SD59x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_SD59x18_Exp2_InputTooBig(SD59x18 x); /// @notice Thrown when flooring a number underflows SD59x18. error PRBMath_SD59x18_Floor_Underflow(SD59x18 x); /// @notice Thrown when taking the geometric mean of two numbers and their product is negative. error PRBMath_SD59x18_Gm_NegativeProduct(SD59x18 x, SD59x18 y); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows SD59x18. error PRBMath_SD59x18_Gm_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_SD59x18_IntoSD1x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_SD59x18_IntoUD2x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD60x18. error PRBMath_SD59x18_IntoUD60x18_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_SD59x18_IntoUint128_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint256. error PRBMath_SD59x18_IntoUint256_Underflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Overflow(SD59x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_SD59x18_IntoUint40_Underflow(SD59x18 x); /// @notice Thrown when taking the logarithm of a number less than or equal to zero. error PRBMath_SD59x18_Log_InputTooSmall(SD59x18 x); /// @notice Thrown when multiplying two numbers and one of the inputs is `MIN_SD59x18`. error PRBMath_SD59x18_Mul_InputTooSmall(); /// @notice Thrown when multiplying two numbers and the intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Mul_Overflow(SD59x18 x, SD59x18 y); /// @notice Thrown when raising a number to a power and hte intermediary absolute result overflows SD59x18. error PRBMath_SD59x18_Powu_Overflow(SD59x18 x, uint256 y); /// @notice Thrown when taking the square root of a negative number. error PRBMath_SD59x18_Sqrt_NegativeInput(SD59x18 x); /// @notice Thrown when the calculating the square root overflows SD59x18. error PRBMath_SD59x18_Sqrt_Overflow(SD59x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the SD59x18 type. function add(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and(SD59x18 x, int256 bits) pure returns (SD59x18 result) { return wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the SD59x18 type. function and2(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { return wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal (=) operation in the SD59x18 type. function eq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the SD59x18 type. function gt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the SD59x18 type. function gte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the SD59x18 type. function isZero(SD59x18 x) pure returns (bool result) { result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the SD59x18 type. function lshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the SD59x18 type. function lt(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the SD59x18 type. function lte(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the unchecked modulo operation (%) in the SD59x18 type. function mod(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the SD59x18 type. function neq(SD59x18 x, SD59x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the SD59x18 type. function not(SD59x18 x) pure returns (SD59x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the SD59x18 type. function or(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the SD59x18 type. function rshift(SD59x18 x, uint256 bits) pure returns (SD59x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the SD59x18 type. function sub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the checked unary minus operation (-) in the SD59x18 type. function unary(SD59x18 x) pure returns (SD59x18 result) { result = wrap(-x.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the SD59x18 type. function uncheckedAdd(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the SD59x18 type. function uncheckedSub(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the unchecked unary minus operation (-) in the SD59x18 type. function uncheckedUnary(SD59x18 x) pure returns (SD59x18 result) { unchecked { result = wrap(-x.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the SD59x18 type. function xor(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_SD59x18, uMAX_WHOLE_SD59x18, uMIN_SD59x18, uMIN_WHOLE_SD59x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { wrap } from "./Helpers.sol"; import { SD59x18 } from "./ValueType.sol"; /// @notice Calculates the absolute value of x. /// /// @dev Requirements: /// - x must be greater than `MIN_SD59x18`. /// /// @param x The SD59x18 number for which to calculate the absolute value. /// @param result The absolute value of x as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function abs(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Abs_MinSD59x18(); } result = xInt < 0 ? wrap(-xInt) : x; } /// @notice Calculates the arithmetic average of x and y. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The arithmetic average as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function avg(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); unchecked { // This operation is equivalent to `x / 2 + y / 2`, and it can never overflow. int256 sum = (xInt >> 1) + (yInt >> 1); if (sum < 0) { // If at least one of x and y is odd, add 1 to the result, because shifting negative numbers to the right // rounds toward negative infinity. The right part is equivalent to `sum + (x % 2 == 1 || y % 2 == 1)`. assembly ("memory-safe") { result := add(sum, and(or(xInt, yInt), 1)) } } else { // Add 1 if both x and y are odd to account for the double 0.5 remainder truncated after shifting. result = wrap(sum + (xInt & yInt & 1)); } } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt > uMAX_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Ceil_Overflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt > 0) { resultInt += uUNIT; } result = wrap(resultInt); } } } /// @notice Divides two SD59x18 numbers, returning a new SD59x18 number. /// /// @dev This is an extension of {Common.mulDiv} for signed numbers, which works by computing the signs and the absolute /// values separately. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// - The result is rounded toward zero. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// - None of the inputs can be `MIN_SD59x18`. /// - The denominator must not be zero. /// - The result must fit in SD59x18. /// /// @param x The numerator as an SD59x18 number. /// @param y The denominator as an SD59x18 number. /// @param result The quotient as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function div(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Div_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*UNIT÷y). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv(xAbs, uint256(uUNIT), yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Div_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}. /// /// Requirements: /// - Refer to the requirements in {exp2}. /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xInt > uEXP_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. int256 doubleUnitProduct = xInt * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method using the following formula: /// /// $$ /// 2^{-x} = \frac{1}{2^x} /// $$ /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693. /// /// Notes: /// - If x is less than -59_794705707972522261, the result is zero. /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in SD59x18. /// /// @param x The exponent as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { // The inverse of any number less than this is truncated to zero. if (xInt < -59_794705707972522261) { return ZERO; } unchecked { // Inline the fixed-point inversion to save gas. result = wrap(uUNIT_SQUARED / exp2(wrap(-xInt)).unwrap()); } } else { // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xInt > uEXP2_MAX_INPUT) { revert Errors.PRBMath_SD59x18_Exp2_InputTooBig(x); } unchecked { // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = uint256((xInt << 64) / uUNIT); // It is safe to cast the result to int256 due to the checks above. result = wrap(int256(Common.exp2(x_192x64))); } } } /// @notice Yields the greatest whole number less than or equal to x. /// /// @dev Optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be greater than or equal to `MIN_WHOLE_SD59x18`. /// /// @param x The SD59x18 number to floor. /// @param result The greatest whole number less than or equal to x, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function floor(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < uMIN_WHOLE_SD59x18) { revert Errors.PRBMath_SD59x18_Floor_Underflow(x); } int256 remainder = xInt % uUNIT; if (remainder == 0) { result = x; } else { unchecked { // Solidity uses C fmod style, which returns a modulus with the same sign as x. int256 resultInt = xInt - remainder; if (xInt < 0) { resultInt -= uUNIT; } result = wrap(resultInt); } } } /// @notice Yields the excess beyond the floor of x for positive numbers and the part of the number to the right. /// of the radix point for negative numbers. /// @dev Based on the odd function definition. https://en.wikipedia.org/wiki/Fractional_part /// @param x The SD59x18 number to get the fractional part of. /// @param result The fractional part of x as an SD59x18 number. function frac(SD59x18 x) pure returns (SD59x18 result) { result = wrap(x.unwrap() % uUNIT); } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x * y must fit in SD59x18. /// - x * y must not be negative, since complex numbers are not supported. /// /// @param x The first operand as an SD59x18 number. /// @param y The second operand as an SD59x18 number. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function gm(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == 0 || yInt == 0) { return ZERO; } unchecked { // Equivalent to `xy / x != y`. Checking for overflow this way is faster than letting Solidity do it. int256 xyInt = xInt * yInt; if (xyInt / xInt != yInt) { revert Errors.PRBMath_SD59x18_Gm_Overflow(x, y); } // The product must not be negative, since complex numbers are not supported. if (xyInt < 0) { revert Errors.PRBMath_SD59x18_Gm_NegativeProduct(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. uint256 resultUint = Common.sqrt(uint256(xyInt)); result = wrap(int256(resultUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The SD59x18 number for which to calculate the inverse. /// @return result The inverse as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function inv(SD59x18 x) pure returns (SD59x18 result) { result = wrap(uUNIT_SQUARED / x.unwrap()); } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function ln(SD59x18 x) pure returns (SD59x18 result) { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~195_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The SD59x18 number for which to calculate the common logarithm. /// @return result The common logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log10(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } // Note that the `mul` in this block is the standard multiplication operation, not {SD59x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } default { result := uMAX_SD59x18 } } if (result.unwrap() == uMAX_SD59x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation. /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The SD59x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function log2(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt <= 0) { revert Errors.PRBMath_SD59x18_Log_InputTooSmall(x); } unchecked { int256 sign; if (xInt >= uUNIT) { sign = 1; } else { sign = -1; // Inline the fixed-point inversion to save gas. xInt = uUNIT_SQUARED / xInt; } // Calculate the integer part of the logarithm. uint256 n = Common.msb(uint256(xInt / uUNIT)); // This is the integer part of the logarithm as an SD59x18 number. The operation can't overflow // because n is at most 255, `UNIT` is 1e18, and the sign is either 1 or -1. int256 resultInt = int256(n) * uUNIT; // Calculate $y = x * 2^{-n}$. int256 y = xInt >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultInt * sign); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. int256 DOUBLE_UNIT = 2e18; for (int256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultInt = resultInt + delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } resultInt *= sign; result = wrap(resultInt); } } /// @notice Multiplies two SD59x18 numbers together, returning a new SD59x18 number. /// /// @dev Notes: /// - Refer to the notes in {Common.mulDiv18}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv18}. /// - None of the inputs can be `MIN_SD59x18`. /// - The result must fit in SD59x18. /// /// @param x The multiplicand as an SD59x18 number. /// @param y The multiplier as an SD59x18 number. /// @return result The product as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function mul(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); if (xInt == uMIN_SD59x18 || yInt == uMIN_SD59x18) { revert Errors.PRBMath_SD59x18_Mul_InputTooSmall(); } // Get hold of the absolute values of x and y. uint256 xAbs; uint256 yAbs; unchecked { xAbs = xInt < 0 ? uint256(-xInt) : uint256(xInt); yAbs = yInt < 0 ? uint256(-yInt) : uint256(yInt); } // Compute the absolute value (x*y÷UNIT). The resulting value must fit in SD59x18. uint256 resultAbs = Common.mulDiv18(xAbs, yAbs); if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Mul_Overflow(x, y); } // Check if x and y have the same sign using two's complement representation. The left-most bit represents the sign (1 for // negative, 0 for positive or zero). bool sameSign = (xInt ^ yInt) > -1; // If the inputs have the same sign, the result should be positive. Otherwise, it should be negative. unchecked { result = wrap(sameSign ? int256(resultAbs) : -int256(resultAbs)); } } /// @notice Raises x to the power of y using the following formula: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// @dev Notes: /// - Refer to the notes in {exp2}, {log2}, and {mul}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as an SD59x18 number. /// @param y Exponent to raise x to, as an SD59x18 number /// @return result x raised to power y, as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function pow(SD59x18 x, SD59x18 y) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); int256 yInt = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xInt == 0) { return yInt == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xInt == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yInt == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yInt == uUNIT) { return x; } // Calculate the result using the formula. result = exp2(mul(log2(x), y)); } /// @notice Raises x (an SD59x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - Refer to the requirements in {abs} and {Common.mulDiv18}. /// - The result must fit in SD59x18. /// /// @param x The base as an SD59x18 number. /// @param y The exponent as a uint256. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function powu(SD59x18 x, uint256 y) pure returns (SD59x18 result) { uint256 xAbs = uint256(abs(x).unwrap()); // Calculate the first iteration of the loop in advance. uint256 resultAbs = y & 1 > 0 ? xAbs : uint256(uUNIT); // Equivalent to `for(y /= 2; y > 0; y /= 2)`. uint256 yAux = y; for (yAux >>= 1; yAux > 0; yAux >>= 1) { xAbs = Common.mulDiv18(xAbs, xAbs); // Equivalent to `y % 2 == 1`. if (yAux & 1 > 0) { resultAbs = Common.mulDiv18(resultAbs, xAbs); } } // The result must fit in SD59x18. if (resultAbs > uint256(uMAX_SD59x18)) { revert Errors.PRBMath_SD59x18_Powu_Overflow(x, y); } unchecked { // Is the base negative and the exponent odd? If yes, the result should be negative. int256 resultInt = int256(resultAbs); bool isNegative = x.unwrap() < 0 && y & 1 == 1; if (isNegative) { resultInt = -resultInt; } result = wrap(resultInt); } } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - Only the positive root is returned. /// - The result is rounded toward zero. /// /// Requirements: /// - x cannot be negative, since complex numbers are not supported. /// - x must be less than `MAX_SD59x18 / UNIT`. /// /// @param x The SD59x18 number for which to calculate the square root. /// @return result The result as an SD59x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(SD59x18 x) pure returns (SD59x18 result) { int256 xInt = x.unwrap(); if (xInt < 0) { revert Errors.PRBMath_SD59x18_Sqrt_NegativeInput(x); } if (xInt > uMAX_SD59x18 / uUNIT) { revert Errors.PRBMath_SD59x18_Sqrt_Overflow(x); } unchecked { // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two SD59x18 numbers. // In this case, the two numbers are both the square root. uint256 resultUint = Common.sqrt(uint256(xInt * uUNIT)); result = wrap(int256(resultUint)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The signed 59.18-decimal fixed-point number representation, which can have up to 59 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type int256. type SD59x18 is int256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoInt256, Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Math.abs, Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.log10, Math.log2, Math.ln, Math.mul, Math.pow, Math.powu, Math.sqrt } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.uncheckedUnary, Helpers.xor } for SD59x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the SD59x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.or as |, Helpers.sub as -, Helpers.unary as -, Helpers.xor as ^ } for SD59x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "../ud60x18/ValueType.sol"; import { UD2x18 } from "./ValueType.sol"; /// @notice Casts a UD2x18 number into SD1x18. /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD2x18 x) pure returns (SD1x18 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(uMAX_SD1x18)) { revert Errors.PRBMath_UD2x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(xUint)); } /// @notice Casts a UD2x18 number into SD59x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of SD59x18. function intoSD59x18(UD2x18 x) pure returns (SD59x18 result) { result = SD59x18.wrap(int256(uint256(UD2x18.unwrap(x)))); } /// @notice Casts a UD2x18 number into UD60x18. /// @dev There is no overflow check because the domain of UD2x18 is a subset of UD60x18. function intoUD60x18(UD2x18 x) pure returns (UD60x18 result) { result = UD60x18.wrap(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint128. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint128. function intoUint128(UD2x18 x) pure returns (uint128 result) { result = uint128(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint256. /// @dev There is no overflow check because the domain of UD2x18 is a subset of uint256. function intoUint256(UD2x18 x) pure returns (uint256 result) { result = uint256(UD2x18.unwrap(x)); } /// @notice Casts a UD2x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD2x18 x) pure returns (uint40 result) { uint64 xUint = UD2x18.unwrap(x); if (xUint > uint64(Common.MAX_UINT40)) { revert Errors.PRBMath_UD2x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud2x18(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); } /// @notice Unwrap a UD2x18 number into uint64. function unwrap(UD2x18 x) pure returns (uint64 result) { result = UD2x18.unwrap(x); } /// @notice Wraps a uint64 number into UD2x18. function wrap(uint64 x) pure returns (UD2x18 result) { result = UD2x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @dev Euler's number as a UD2x18 number. UD2x18 constant E = UD2x18.wrap(2_718281828459045235); /// @dev The maximum value a UD2x18 number can have. uint64 constant uMAX_UD2x18 = 18_446744073709551615; UD2x18 constant MAX_UD2x18 = UD2x18.wrap(uMAX_UD2x18); /// @dev PI as a UD2x18 number. UD2x18 constant PI = UD2x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD2x18. uint256 constant uUNIT = 1e18; UD2x18 constant UNIT = UD2x18.wrap(1e18);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD2x18 } from "./ValueType.sol"; /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in SD1x18. error PRBMath_UD2x18_IntoSD1x18_Overflow(UD2x18 x); /// @notice Thrown when trying to cast a UD2x18 number that doesn't fit in uint40. error PRBMath_UD2x18_IntoUint40_Overflow(UD2x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; /// @notice The unsigned 2.18-decimal fixed-point number representation, which can have up to 2 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the underlying Solidity /// type uint64. This is useful when end users want to use uint64 to save gas, e.g. with tight variable packing in contract /// storage. type UD2x18 is uint64; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoSD59x18, Casting.intoUD60x18, Casting.intoUint256, Casting.intoUint128, Casting.intoUint40, Casting.unwrap } for UD2x18 global;
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; /* ██████╗ ██████╗ ██████╗ ███╗ ███╗ █████╗ ████████╗██╗ ██╗ ██╔══██╗██╔══██╗██╔══██╗████╗ ████║██╔══██╗╚══██╔══╝██║ ██║ ██████╔╝██████╔╝██████╔╝██╔████╔██║███████║ ██║ ███████║ ██╔═══╝ ██╔══██╗██╔══██╗██║╚██╔╝██║██╔══██║ ██║ ██╔══██║ ██║ ██║ ██║██████╔╝██║ ╚═╝ ██║██║ ██║ ██║ ██║ ██║ ╚═╝ ╚═╝ ╚═╝╚═════╝ ╚═╝ ╚═╝╚═╝ ╚═╝ ╚═╝ ╚═╝ ╚═╝ ██╗ ██╗██████╗ ██████╗ ██████╗ ██╗ ██╗ ██╗ █████╗ ██║ ██║██╔══██╗██╔════╝ ██╔═████╗╚██╗██╔╝███║██╔══██╗ ██║ ██║██║ ██║███████╗ ██║██╔██║ ╚███╔╝ ╚██║╚█████╔╝ ██║ ██║██║ ██║██╔═══██╗████╔╝██║ ██╔██╗ ██║██╔══██╗ ╚██████╔╝██████╔╝╚██████╔╝╚██████╔╝██╔╝ ██╗ ██║╚█████╔╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═════╝ ╚═╝ ╚═╝ ╚═╝ ╚════╝ */ import "./ud60x18/Casting.sol"; import "./ud60x18/Constants.sol"; import "./ud60x18/Conversions.sol"; import "./ud60x18/Errors.sol"; import "./ud60x18/Helpers.sol"; import "./ud60x18/Math.sol"; import "./ud60x18/ValueType.sol";
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Errors.sol" as CastingErrors; import { MAX_UINT128, MAX_UINT40 } from "../Common.sol"; import { uMAX_SD1x18 } from "../sd1x18/Constants.sol"; import { SD1x18 } from "../sd1x18/ValueType.sol"; import { uMAX_SD59x18 } from "../sd59x18/Constants.sol"; import { SD59x18 } from "../sd59x18/ValueType.sol"; import { uMAX_UD2x18 } from "../ud2x18/Constants.sol"; import { UD2x18 } from "../ud2x18/ValueType.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Casts a UD60x18 number into SD1x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD1x18`. function intoSD1x18(UD60x18 x) pure returns (SD1x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(int256(uMAX_SD1x18))) { revert CastingErrors.PRBMath_UD60x18_IntoSD1x18_Overflow(x); } result = SD1x18.wrap(int64(uint64(xUint))); } /// @notice Casts a UD60x18 number into UD2x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_UD2x18`. function intoUD2x18(UD60x18 x) pure returns (UD2x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uMAX_UD2x18) { revert CastingErrors.PRBMath_UD60x18_IntoUD2x18_Overflow(x); } result = UD2x18.wrap(uint64(xUint)); } /// @notice Casts a UD60x18 number into SD59x18. /// @dev Requirements: /// - x must be less than or equal to `uMAX_SD59x18`. function intoSD59x18(UD60x18 x) pure returns (SD59x18 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > uint256(uMAX_SD59x18)) { revert CastingErrors.PRBMath_UD60x18_IntoSD59x18_Overflow(x); } result = SD59x18.wrap(int256(xUint)); } /// @notice Casts a UD60x18 number into uint128. /// @dev This is basically an alias for {unwrap}. function intoUint256(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Casts a UD60x18 number into uint128. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT128`. function intoUint128(UD60x18 x) pure returns (uint128 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT128) { revert CastingErrors.PRBMath_UD60x18_IntoUint128_Overflow(x); } result = uint128(xUint); } /// @notice Casts a UD60x18 number into uint40. /// @dev Requirements: /// - x must be less than or equal to `MAX_UINT40`. function intoUint40(UD60x18 x) pure returns (uint40 result) { uint256 xUint = UD60x18.unwrap(x); if (xUint > MAX_UINT40) { revert CastingErrors.PRBMath_UD60x18_IntoUint40_Overflow(x); } result = uint40(xUint); } /// @notice Alias for {wrap}. function ud(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Alias for {wrap}. function ud60x18(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); } /// @notice Unwraps a UD60x18 number into uint256. function unwrap(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x); } /// @notice Wraps a uint256 number into the UD60x18 value type. function wrap(uint256 x) pure returns (UD60x18 result) { result = UD60x18.wrap(x); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; // NOTICE: the "u" prefix stands for "unwrapped". /// @dev Euler's number as a UD60x18 number. UD60x18 constant E = UD60x18.wrap(2_718281828459045235); /// @dev The maximum input permitted in {exp}. uint256 constant uEXP_MAX_INPUT = 133_084258667509499440; UD60x18 constant EXP_MAX_INPUT = UD60x18.wrap(uEXP_MAX_INPUT); /// @dev The maximum input permitted in {exp2}. uint256 constant uEXP2_MAX_INPUT = 192e18 - 1; UD60x18 constant EXP2_MAX_INPUT = UD60x18.wrap(uEXP2_MAX_INPUT); /// @dev Half the UNIT number. uint256 constant uHALF_UNIT = 0.5e18; UD60x18 constant HALF_UNIT = UD60x18.wrap(uHALF_UNIT); /// @dev $log_2(10)$ as a UD60x18 number. uint256 constant uLOG2_10 = 3_321928094887362347; UD60x18 constant LOG2_10 = UD60x18.wrap(uLOG2_10); /// @dev $log_2(e)$ as a UD60x18 number. uint256 constant uLOG2_E = 1_442695040888963407; UD60x18 constant LOG2_E = UD60x18.wrap(uLOG2_E); /// @dev The maximum value a UD60x18 number can have. uint256 constant uMAX_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_584007913129639935; UD60x18 constant MAX_UD60x18 = UD60x18.wrap(uMAX_UD60x18); /// @dev The maximum whole value a UD60x18 number can have. uint256 constant uMAX_WHOLE_UD60x18 = 115792089237316195423570985008687907853269984665640564039457_000000000000000000; UD60x18 constant MAX_WHOLE_UD60x18 = UD60x18.wrap(uMAX_WHOLE_UD60x18); /// @dev PI as a UD60x18 number. UD60x18 constant PI = UD60x18.wrap(3_141592653589793238); /// @dev The unit number, which gives the decimal precision of UD60x18. uint256 constant uUNIT = 1e18; UD60x18 constant UNIT = UD60x18.wrap(uUNIT); /// @dev The unit number squared. uint256 constant uUNIT_SQUARED = 1e36; UD60x18 constant UNIT_SQUARED = UD60x18.wrap(uUNIT_SQUARED); /// @dev Zero as a UD60x18 number. UD60x18 constant ZERO = UD60x18.wrap(0);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { uMAX_UD60x18, uUNIT } from "./Constants.sol"; import { PRBMath_UD60x18_Convert_Overflow } from "./Errors.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Converts a UD60x18 number to a simple integer by dividing it by `UNIT`. /// @dev The result is rounded toward zero. /// @param x The UD60x18 number to convert. /// @return result The same number in basic integer form. function convert(UD60x18 x) pure returns (uint256 result) { result = UD60x18.unwrap(x) / uUNIT; } /// @notice Converts a simple integer to UD60x18 by multiplying it by `UNIT`. /// /// @dev Requirements: /// - x must be less than or equal to `MAX_UD60x18 / UNIT`. /// /// @param x The basic integer to convert. /// @param result The same number converted to UD60x18. function convert(uint256 x) pure returns (UD60x18 result) { if (x > uMAX_UD60x18 / uUNIT) { revert PRBMath_UD60x18_Convert_Overflow(x); } unchecked { result = UD60x18.wrap(x * uUNIT); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { UD60x18 } from "./ValueType.sol"; /// @notice Thrown when ceiling a number overflows UD60x18. error PRBMath_UD60x18_Ceil_Overflow(UD60x18 x); /// @notice Thrown when converting a basic integer to the fixed-point format overflows UD60x18. error PRBMath_UD60x18_Convert_Overflow(uint256 x); /// @notice Thrown when taking the natural exponent of a base greater than 133_084258667509499441. error PRBMath_UD60x18_Exp_InputTooBig(UD60x18 x); /// @notice Thrown when taking the binary exponent of a base greater than 192e18. error PRBMath_UD60x18_Exp2_InputTooBig(UD60x18 x); /// @notice Thrown when taking the geometric mean of two numbers and multiplying them overflows UD60x18. error PRBMath_UD60x18_Gm_Overflow(UD60x18 x, UD60x18 y); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD1x18. error PRBMath_UD60x18_IntoSD1x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in SD59x18. error PRBMath_UD60x18_IntoSD59x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in UD2x18. error PRBMath_UD60x18_IntoUD2x18_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint128. error PRBMath_UD60x18_IntoUint128_Overflow(UD60x18 x); /// @notice Thrown when trying to cast a UD60x18 number that doesn't fit in uint40. error PRBMath_UD60x18_IntoUint40_Overflow(UD60x18 x); /// @notice Thrown when taking the logarithm of a number less than 1. error PRBMath_UD60x18_Log_InputTooSmall(UD60x18 x); /// @notice Thrown when calculating the square root overflows UD60x18. error PRBMath_UD60x18_Sqrt_Overflow(UD60x18 x);
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import { wrap } from "./Casting.sol"; import { UD60x18 } from "./ValueType.sol"; /// @notice Implements the checked addition operation (+) in the UD60x18 type. function add(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() + y.unwrap()); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() & bits); } /// @notice Implements the AND (&) bitwise operation in the UD60x18 type. function and2(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() & y.unwrap()); } /// @notice Implements the equal operation (==) in the UD60x18 type. function eq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() == y.unwrap(); } /// @notice Implements the greater than operation (>) in the UD60x18 type. function gt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() > y.unwrap(); } /// @notice Implements the greater than or equal to operation (>=) in the UD60x18 type. function gte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() >= y.unwrap(); } /// @notice Implements a zero comparison check function in the UD60x18 type. function isZero(UD60x18 x) pure returns (bool result) { // This wouldn't work if x could be negative. result = x.unwrap() == 0; } /// @notice Implements the left shift operation (<<) in the UD60x18 type. function lshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() << bits); } /// @notice Implements the lower than operation (<) in the UD60x18 type. function lt(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() < y.unwrap(); } /// @notice Implements the lower than or equal to operation (<=) in the UD60x18 type. function lte(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() <= y.unwrap(); } /// @notice Implements the checked modulo operation (%) in the UD60x18 type. function mod(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() % y.unwrap()); } /// @notice Implements the not equal operation (!=) in the UD60x18 type. function neq(UD60x18 x, UD60x18 y) pure returns (bool result) { result = x.unwrap() != y.unwrap(); } /// @notice Implements the NOT (~) bitwise operation in the UD60x18 type. function not(UD60x18 x) pure returns (UD60x18 result) { result = wrap(~x.unwrap()); } /// @notice Implements the OR (|) bitwise operation in the UD60x18 type. function or(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() | y.unwrap()); } /// @notice Implements the right shift operation (>>) in the UD60x18 type. function rshift(UD60x18 x, uint256 bits) pure returns (UD60x18 result) { result = wrap(x.unwrap() >> bits); } /// @notice Implements the checked subtraction operation (-) in the UD60x18 type. function sub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() - y.unwrap()); } /// @notice Implements the unchecked addition operation (+) in the UD60x18 type. function uncheckedAdd(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() + y.unwrap()); } } /// @notice Implements the unchecked subtraction operation (-) in the UD60x18 type. function uncheckedSub(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { unchecked { result = wrap(x.unwrap() - y.unwrap()); } } /// @notice Implements the XOR (^) bitwise operation in the UD60x18 type. function xor(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(x.unwrap() ^ y.unwrap()); }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "../Common.sol" as Common; import "./Errors.sol" as Errors; import { wrap } from "./Casting.sol"; import { uEXP_MAX_INPUT, uEXP2_MAX_INPUT, uHALF_UNIT, uLOG2_10, uLOG2_E, uMAX_UD60x18, uMAX_WHOLE_UD60x18, UNIT, uUNIT, uUNIT_SQUARED, ZERO } from "./Constants.sol"; import { UD60x18 } from "./ValueType.sol"; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ /// @notice Calculates the arithmetic average of x and y using the following formula: /// /// $$ /// avg(x, y) = (x & y) + ((xUint ^ yUint) / 2) /// $$ // /// In English, this is what this formula does: /// /// 1. AND x and y. /// 2. Calculate half of XOR x and y. /// 3. Add the two results together. /// /// This technique is known as SWAR, which stands for "SIMD within a register". You can read more about it here: /// https://devblogs.microsoft.com/oldnewthing/20220207-00/?p=106223 /// /// @dev Notes: /// - The result is rounded toward zero. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The arithmetic average as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function avg(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); unchecked { result = wrap((xUint & yUint) + ((xUint ^ yUint) >> 1)); } } /// @notice Yields the smallest whole number greater than or equal to x. /// /// @dev This is optimized for fractional value inputs, because for every whole value there are (1e18 - 1) fractional /// counterparts. See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// /// Requirements: /// - x must be less than or equal to `MAX_WHOLE_UD60x18`. /// /// @param x The UD60x18 number to ceil. /// @param result The smallest whole number greater than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ceil(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint > uMAX_WHOLE_UD60x18) { revert Errors.PRBMath_UD60x18_Ceil_Overflow(x); } assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `UNIT - remainder`. let delta := sub(uUNIT, remainder) // Equivalent to `x + remainder > 0 ? delta : 0`. result := add(x, mul(delta, gt(remainder, 0))) } } /// @notice Divides two UD60x18 numbers, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @param x The numerator as a UD60x18 number. /// @param y The denominator as a UD60x18 number. /// @param result The quotient as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function div(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv(x.unwrap(), uUNIT, y.unwrap())); } /// @notice Calculates the natural exponent of x using the following formula: /// /// $$ /// e^x = 2^{x * log_2{e}} /// $$ /// /// @dev Requirements: /// - x must be less than 133_084258667509499441. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // This check prevents values greater than 192e18 from being passed to {exp2}. if (xUint > uEXP_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp_InputTooBig(x); } unchecked { // Inline the fixed-point multiplication to save gas. uint256 doubleUnitProduct = xUint * uLOG2_E; result = exp2(wrap(doubleUnitProduct / uUNIT)); } } /// @notice Calculates the binary exponent of x using the binary fraction method. /// /// @dev See https://ethereum.stackexchange.com/q/79903/24693 /// /// Requirements: /// - x must be less than 192e18. /// - The result must fit in UD60x18. /// /// @param x The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function exp2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); // Numbers greater than or equal to 192e18 don't fit in the 192.64-bit format. if (xUint > uEXP2_MAX_INPUT) { revert Errors.PRBMath_UD60x18_Exp2_InputTooBig(x); } // Convert x to the 192.64-bit fixed-point format. uint256 x_192x64 = (xUint << 64) / uUNIT; // Pass x to the {Common.exp2} function, which uses the 192.64-bit fixed-point number representation. result = wrap(Common.exp2(x_192x64)); } /// @notice Yields the greatest whole number less than or equal to x. /// @dev Optimized for fractional value inputs, because every whole value has (1e18 - 1) fractional counterparts. /// See https://en.wikipedia.org/wiki/Floor_and_ceiling_functions. /// @param x The UD60x18 number to floor. /// @param result The greatest whole number less than or equal to x, as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function floor(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { // Equivalent to `x % UNIT`. let remainder := mod(x, uUNIT) // Equivalent to `x - remainder > 0 ? remainder : 0)`. result := sub(x, mul(remainder, gt(remainder, 0))) } } /// @notice Yields the excess beyond the floor of x using the odd function definition. /// @dev See https://en.wikipedia.org/wiki/Fractional_part. /// @param x The UD60x18 number to get the fractional part of. /// @param result The fractional part of x as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function frac(UD60x18 x) pure returns (UD60x18 result) { assembly ("memory-safe") { result := mod(x, uUNIT) } } /// @notice Calculates the geometric mean of x and y, i.e. $\sqrt{x * y}$, rounding down. /// /// @dev Requirements: /// - x * y must fit in UD60x18. /// /// @param x The first operand as a UD60x18 number. /// @param y The second operand as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function gm(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); if (xUint == 0 || yUint == 0) { return ZERO; } unchecked { // Checking for overflow this way is faster than letting Solidity do it. uint256 xyUint = xUint * yUint; if (xyUint / xUint != yUint) { revert Errors.PRBMath_UD60x18_Gm_Overflow(x, y); } // We don't need to multiply the result by `UNIT` here because the x*y product picked up a factor of `UNIT` // during multiplication. See the comments in {Common.sqrt}. result = wrap(Common.sqrt(xyUint)); } } /// @notice Calculates the inverse of x. /// /// @dev Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must not be zero. /// /// @param x The UD60x18 number for which to calculate the inverse. /// @return result The inverse as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function inv(UD60x18 x) pure returns (UD60x18 result) { unchecked { result = wrap(uUNIT_SQUARED / x.unwrap()); } } /// @notice Calculates the natural logarithm of x using the following formula: /// /// $$ /// ln{x} = log_2{x} / log_2{e} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2}. /// - The precision isn't sufficiently fine-grained to return exactly `UNIT` when the input is `E`. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the natural logarithm. /// @return result The natural logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function ln(UD60x18 x) pure returns (UD60x18 result) { unchecked { // Inline the fixed-point multiplication to save gas. This is overflow-safe because the maximum value that // {log2} can return is ~196_205294292027477728. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_E); } } /// @notice Calculates the common logarithm of x using the following formula: /// /// $$ /// log_{10}{x} = log_2{x} / log_2{10} /// $$ /// /// However, if x is an exact power of ten, a hard coded value is returned. /// /// @dev Notes: /// - Refer to the notes in {log2}. /// /// Requirements: /// - Refer to the requirements in {log2}. /// /// @param x The UD60x18 number for which to calculate the common logarithm. /// @return result The common logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log10(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } // Note that the `mul` in this assembly block is the standard multiplication operation, not {UD60x18.mul}. // prettier-ignore assembly ("memory-safe") { switch x case 1 { result := mul(uUNIT, sub(0, 18)) } case 10 { result := mul(uUNIT, sub(1, 18)) } case 100 { result := mul(uUNIT, sub(2, 18)) } case 1000 { result := mul(uUNIT, sub(3, 18)) } case 10000 { result := mul(uUNIT, sub(4, 18)) } case 100000 { result := mul(uUNIT, sub(5, 18)) } case 1000000 { result := mul(uUNIT, sub(6, 18)) } case 10000000 { result := mul(uUNIT, sub(7, 18)) } case 100000000 { result := mul(uUNIT, sub(8, 18)) } case 1000000000 { result := mul(uUNIT, sub(9, 18)) } case 10000000000 { result := mul(uUNIT, sub(10, 18)) } case 100000000000 { result := mul(uUNIT, sub(11, 18)) } case 1000000000000 { result := mul(uUNIT, sub(12, 18)) } case 10000000000000 { result := mul(uUNIT, sub(13, 18)) } case 100000000000000 { result := mul(uUNIT, sub(14, 18)) } case 1000000000000000 { result := mul(uUNIT, sub(15, 18)) } case 10000000000000000 { result := mul(uUNIT, sub(16, 18)) } case 100000000000000000 { result := mul(uUNIT, sub(17, 18)) } case 1000000000000000000 { result := 0 } case 10000000000000000000 { result := uUNIT } case 100000000000000000000 { result := mul(uUNIT, 2) } case 1000000000000000000000 { result := mul(uUNIT, 3) } case 10000000000000000000000 { result := mul(uUNIT, 4) } case 100000000000000000000000 { result := mul(uUNIT, 5) } case 1000000000000000000000000 { result := mul(uUNIT, 6) } case 10000000000000000000000000 { result := mul(uUNIT, 7) } case 100000000000000000000000000 { result := mul(uUNIT, 8) } case 1000000000000000000000000000 { result := mul(uUNIT, 9) } case 10000000000000000000000000000 { result := mul(uUNIT, 10) } case 100000000000000000000000000000 { result := mul(uUNIT, 11) } case 1000000000000000000000000000000 { result := mul(uUNIT, 12) } case 10000000000000000000000000000000 { result := mul(uUNIT, 13) } case 100000000000000000000000000000000 { result := mul(uUNIT, 14) } case 1000000000000000000000000000000000 { result := mul(uUNIT, 15) } case 10000000000000000000000000000000000 { result := mul(uUNIT, 16) } case 100000000000000000000000000000000000 { result := mul(uUNIT, 17) } case 1000000000000000000000000000000000000 { result := mul(uUNIT, 18) } case 10000000000000000000000000000000000000 { result := mul(uUNIT, 19) } case 100000000000000000000000000000000000000 { result := mul(uUNIT, 20) } case 1000000000000000000000000000000000000000 { result := mul(uUNIT, 21) } case 10000000000000000000000000000000000000000 { result := mul(uUNIT, 22) } case 100000000000000000000000000000000000000000 { result := mul(uUNIT, 23) } case 1000000000000000000000000000000000000000000 { result := mul(uUNIT, 24) } case 10000000000000000000000000000000000000000000 { result := mul(uUNIT, 25) } case 100000000000000000000000000000000000000000000 { result := mul(uUNIT, 26) } case 1000000000000000000000000000000000000000000000 { result := mul(uUNIT, 27) } case 10000000000000000000000000000000000000000000000 { result := mul(uUNIT, 28) } case 100000000000000000000000000000000000000000000000 { result := mul(uUNIT, 29) } case 1000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 30) } case 10000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 31) } case 100000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 32) } case 1000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 33) } case 10000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 34) } case 100000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 35) } case 1000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 36) } case 10000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 37) } case 100000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 38) } case 1000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 39) } case 10000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 40) } case 100000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 41) } case 1000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 42) } case 10000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 43) } case 100000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 44) } case 1000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 45) } case 10000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 46) } case 100000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 47) } case 1000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 48) } case 10000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 49) } case 100000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 50) } case 1000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 51) } case 10000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 52) } case 100000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 53) } case 1000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 54) } case 10000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 55) } case 100000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 56) } case 1000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 57) } case 10000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 58) } case 100000000000000000000000000000000000000000000000000000000000000000000000000000 { result := mul(uUNIT, 59) } default { result := uMAX_UD60x18 } } if (result.unwrap() == uMAX_UD60x18) { unchecked { // Inline the fixed-point division to save gas. result = wrap(log2(x).unwrap() * uUNIT / uLOG2_10); } } } /// @notice Calculates the binary logarithm of x using the iterative approximation algorithm: /// /// $$ /// log_2{x} = n + log_2{y}, \text{ where } y = x*2^{-n}, \ y \in [1, 2) /// $$ /// /// For $0 \leq x \lt 1$, the input is inverted: /// /// $$ /// log_2{x} = -log_2{\frac{1}{x}} /// $$ /// /// @dev See https://en.wikipedia.org/wiki/Binary_logarithm#Iterative_approximation /// /// Notes: /// - Due to the lossy precision of the iterative approximation, the results are not perfectly accurate to the last decimal. /// /// Requirements: /// - x must be greater than zero. /// /// @param x The UD60x18 number for which to calculate the binary logarithm. /// @return result The binary logarithm as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function log2(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); if (xUint < uUNIT) { revert Errors.PRBMath_UD60x18_Log_InputTooSmall(x); } unchecked { // Calculate the integer part of the logarithm. uint256 n = Common.msb(xUint / uUNIT); // This is the integer part of the logarithm as a UD60x18 number. The operation can't overflow because n // n is at most 255 and UNIT is 1e18. uint256 resultUint = n * uUNIT; // Calculate $y = x * 2^{-n}$. uint256 y = xUint >> n; // If y is the unit number, the fractional part is zero. if (y == uUNIT) { return wrap(resultUint); } // Calculate the fractional part via the iterative approximation. // The `delta >>= 1` part is equivalent to `delta /= 2`, but shifting bits is more gas efficient. uint256 DOUBLE_UNIT = 2e18; for (uint256 delta = uHALF_UNIT; delta > 0; delta >>= 1) { y = (y * y) / uUNIT; // Is y^2 >= 2e18 and so in the range [2e18, 4e18)? if (y >= DOUBLE_UNIT) { // Add the 2^{-m} factor to the logarithm. resultUint += delta; // Halve y, which corresponds to z/2 in the Wikipedia article. y >>= 1; } } result = wrap(resultUint); } } /// @notice Multiplies two UD60x18 numbers together, returning a new UD60x18 number. /// /// @dev Uses {Common.mulDiv} to enable overflow-safe multiplication and division. /// /// Notes: /// - Refer to the notes in {Common.mulDiv}. /// /// Requirements: /// - Refer to the requirements in {Common.mulDiv}. /// /// @dev See the documentation in {Common.mulDiv18}. /// @param x The multiplicand as a UD60x18 number. /// @param y The multiplier as a UD60x18 number. /// @return result The product as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function mul(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { result = wrap(Common.mulDiv18(x.unwrap(), y.unwrap())); } /// @notice Raises x to the power of y. /// /// For $1 \leq x \leq \infty$, the following standard formula is used: /// /// $$ /// x^y = 2^{log_2{x} * y} /// $$ /// /// For $0 \leq x \lt 1$, since the unsigned {log2} is undefined, an equivalent formula is used: /// /// $$ /// i = \frac{1}{x} /// w = 2^{log_2{i} * y} /// x^y = \frac{1}{w} /// $$ /// /// @dev Notes: /// - Refer to the notes in {log2} and {mul}. /// - Returns `UNIT` for 0^0. /// - It may not perform well with very small values of x. Consider using SD59x18 as an alternative. /// /// Requirements: /// - Refer to the requirements in {exp2}, {log2}, and {mul}. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a UD60x18 number. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function pow(UD60x18 x, UD60x18 y) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); uint256 yUint = y.unwrap(); // If both x and y are zero, the result is `UNIT`. If just x is zero, the result is always zero. if (xUint == 0) { return yUint == 0 ? UNIT : ZERO; } // If x is `UNIT`, the result is always `UNIT`. else if (xUint == uUNIT) { return UNIT; } // If y is zero, the result is always `UNIT`. if (yUint == 0) { return UNIT; } // If y is `UNIT`, the result is always x. else if (yUint == uUNIT) { return x; } // If x is greater than `UNIT`, use the standard formula. if (xUint > uUNIT) { result = exp2(mul(log2(x), y)); } // Conversely, if x is less than `UNIT`, use the equivalent formula. else { UD60x18 i = wrap(uUNIT_SQUARED / xUint); UD60x18 w = exp2(mul(log2(i), y)); result = wrap(uUNIT_SQUARED / w.unwrap()); } } /// @notice Raises x (a UD60x18 number) to the power y (an unsigned basic integer) using the well-known /// algorithm "exponentiation by squaring". /// /// @dev See https://en.wikipedia.org/wiki/Exponentiation_by_squaring. /// /// Notes: /// - Refer to the notes in {Common.mulDiv18}. /// - Returns `UNIT` for 0^0. /// /// Requirements: /// - The result must fit in UD60x18. /// /// @param x The base as a UD60x18 number. /// @param y The exponent as a uint256. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function powu(UD60x18 x, uint256 y) pure returns (UD60x18 result) { // Calculate the first iteration of the loop in advance. uint256 xUint = x.unwrap(); uint256 resultUint = y & 1 > 0 ? xUint : uUNIT; // Equivalent to `for(y /= 2; y > 0; y /= 2)`. for (y >>= 1; y > 0; y >>= 1) { xUint = Common.mulDiv18(xUint, xUint); // Equivalent to `y % 2 == 1`. if (y & 1 > 0) { resultUint = Common.mulDiv18(resultUint, xUint); } } result = wrap(resultUint); } /// @notice Calculates the square root of x using the Babylonian method. /// /// @dev See https://en.wikipedia.org/wiki/Methods_of_computing_square_roots#Babylonian_method. /// /// Notes: /// - The result is rounded toward zero. /// /// Requirements: /// - x must be less than `MAX_UD60x18 / UNIT`. /// /// @param x The UD60x18 number for which to calculate the square root. /// @return result The result as a UD60x18 number. /// @custom:smtchecker abstract-function-nondet function sqrt(UD60x18 x) pure returns (UD60x18 result) { uint256 xUint = x.unwrap(); unchecked { if (xUint > uMAX_UD60x18 / uUNIT) { revert Errors.PRBMath_UD60x18_Sqrt_Overflow(x); } // Multiply x by `UNIT` to account for the factor of `UNIT` picked up when multiplying two UD60x18 numbers. // In this case, the two numbers are both the square root. result = wrap(Common.sqrt(xUint * uUNIT)); } }
// SPDX-License-Identifier: MIT pragma solidity >=0.8.19; import "./Casting.sol" as Casting; import "./Helpers.sol" as Helpers; import "./Math.sol" as Math; /// @notice The unsigned 60.18-decimal fixed-point number representation, which can have up to 60 digits and up to 18 /// decimals. The values of this are bound by the minimum and the maximum values permitted by the Solidity type uint256. /// @dev The value type is defined here so it can be imported in all other files. type UD60x18 is uint256; /*////////////////////////////////////////////////////////////////////////// CASTING //////////////////////////////////////////////////////////////////////////*/ using { Casting.intoSD1x18, Casting.intoUD2x18, Casting.intoSD59x18, Casting.intoUint128, Casting.intoUint256, Casting.intoUint40, Casting.unwrap } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// MATHEMATICAL FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Math.avg, Math.ceil, Math.div, Math.exp, Math.exp2, Math.floor, Math.frac, Math.gm, Math.inv, Math.ln, Math.log10, Math.log2, Math.mul, Math.pow, Math.powu, Math.sqrt } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// HELPER FUNCTIONS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes the functions in this library callable on the UD60x18 type. using { Helpers.add, Helpers.and, Helpers.eq, Helpers.gt, Helpers.gte, Helpers.isZero, Helpers.lshift, Helpers.lt, Helpers.lte, Helpers.mod, Helpers.neq, Helpers.not, Helpers.or, Helpers.rshift, Helpers.sub, Helpers.uncheckedAdd, Helpers.uncheckedSub, Helpers.xor } for UD60x18 global; /*////////////////////////////////////////////////////////////////////////// OPERATORS //////////////////////////////////////////////////////////////////////////*/ // The global "using for" directive makes it possible to use these operators on the UD60x18 type. using { Helpers.add as +, Helpers.and2 as &, Math.div as /, Helpers.eq as ==, Helpers.gt as >, Helpers.gte as >=, Helpers.lt as <, Helpers.lte as <=, Helpers.or as |, Helpers.mod as %, Math.mul as *, Helpers.neq as !=, Helpers.not as ~, Helpers.sub as -, Helpers.xor as ^ } for UD60x18 global;
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; /** * Allows tracking of fees using cumulative moving-averages: * > * > avg[n+1] = (fee[n+1] + n*avg[n]) / (n+1) * > */ abstract contract FeeTracker { /** cumulative moving-averages: gas & gas-price */ uint256[2] private _average; /** gas & gas-price tracker */ modifier tracked() { uint256 gas = gasleft(); _; _update(gas - gasleft(), tx.gasprice); } /** update averages over gas & gas-price */ function _update(uint256 gasValue, uint256 gasPrice) private { uint256 value = _average[0]; if (value > 0) { _average[0] = (gasValue + value * 0xf) >> 4; } else { _average[0] = (gasValue); } uint256 price = _average[1]; if (price > 0) { _average[1] = (gasPrice + price * 0xf) >> 4; } else { _average[1] = (gasPrice); } } /** @return fee-estimate and averages over gas & gas-price */ function _fees(uint256 add, uint256 mul, uint256 div) internal view returns (uint256[] memory) { uint256[] memory array = new uint256[](3); uint256 gasPrice = _average[1]; array[2] = gasPrice; uint256 gasValue = _average[0]; array[1] = gasValue; uint256 feeValue = gasPrice * gasValue; array[0] = ((feeValue + add) * mul) / div; return array; } }
// SPDX-License-Identifier: GPL-3.0 // solhint-disable not-rely-on-time pragma solidity ^0.8.0; import {ERC20, IERC20, IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/ERC20.sol"; import {ERC20Burnable} from "@openzeppelin/contracts/token/ERC20/extensions/ERC20Burnable.sol"; import {Supervised, MoeMigratableSupervised, SovMigratableSupervised} from "./Supervised.sol"; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; /** * Allows migration of tokens from an old contract upto a certain deadline. * Further, it is possible to close down the migration window earlier than * the specified deadline. */ abstract contract Migratable is ERC20, ERC20Burnable, Supervised { /** burnable ERC20 tokens */ ERC20Burnable[] private _base; /** base address to index map */ mapping(address => uint256) private _index; /** timestamp of immigration deadline */ uint256 private _deadlineBy; /** flag to seal immigration */ bool[] private _sealed; /** number of immigrated tokens */ uint256 private _migrated; /** @param base addresses of old contracts */ /** @param deadlineIn seconds to end-of-migration */ constructor(address[] memory base, uint256 deadlineIn) { _deadlineBy = block.timestamp + deadlineIn; _base = new ERC20Burnable[](base.length); _sealed = new bool[](base.length); for (uint256 i = 0; i < base.length; i++) { _base[i] = ERC20Burnable(base[i]); _index[base[i]] = i; } } /** @return index of base address */ function oldIndexOf(address base) external view returns (uint256) { return _index[base]; } /** migrate amount of ERC20 tokens */ function migrate(uint256 amount, uint256[] memory index) external returns (uint256) { return _migrateFrom(msg.sender, amount, index); } /** migrate amount of ERC20 tokens */ function migrateFrom(address account, uint256 amount, uint256[] memory index) external returns (uint256) { return _migrateFrom(account, amount, index); } /** migrate amount of ERC20 tokens */ function _migrateFrom(address account, uint256 amount, uint256[] memory index) internal virtual returns (uint256) { uint256 minAmount = Math.min(amount, _base[index[0]].balanceOf(account)); uint256 newAmount = _premigrate(account, minAmount, index[0]); _mint(account, newAmount); return newAmount; } /** migrate amount of ERC20 tokens */ function _premigrate(address account, uint256 amount, uint256 index) internal returns (uint256) { require(!_sealed[index], "migration sealed"); uint256 timestamp = block.timestamp; require(_deadlineBy >= timestamp, "deadline passed"); _base[index].burnFrom(account, amount); assert(amount > 0 || amount == 0); uint256 newAmount = newUnits(amount, index); _migrated += newAmount; return newAmount; } /** @return forward converted new amount w.r.t. decimals */ function newUnits(uint256 oldAmount, uint256 index) public view returns (uint256) { if (decimals() >= _base[index].decimals()) { return oldAmount * (10 ** (decimals() - _base[index].decimals())); } else { return oldAmount / (10 ** (_base[index].decimals() - decimals())); } } /** @return backward converted old amount w.r.t. decimals */ function oldUnits(uint256 newAmount, uint256 index) public view returns (uint256) { if (decimals() >= _base[index].decimals()) { return newAmount / (10 ** (decimals() - _base[index].decimals())); } else { return newAmount * (10 ** (_base[index].decimals() - decimals())); } } /** @return number of migrated tokens */ function migrated() public view returns (uint256) { return _migrated; } /** seal immigration */ function _seal(uint256 index) internal { _sealed[index] = true; } /** seal-all immigration */ function _sealAll() internal { for (uint256 i = 0; i < _sealed.length; i++) { _sealed[i] = true; } } /** @return seal flags (of all bases) */ function seals() public view returns (bool[] memory) { return _sealed; } /** @return true if this contract implements the interface defined by interface-id */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return interfaceId == type(IERC20).interfaceId || interfaceId == type(IERC20Metadata).interfaceId || super.supportsInterface(interfaceId); } } /** * Allows migration of MOE tokens from an old contract upto a certain deadline. */ abstract contract MoeMigratable is Migratable, MoeMigratableSupervised { /** seal migration */ function seal(uint256 index) external onlyRole(MOE_SEAL_ROLE) { _seal(index); } /** seal-all migration */ function sealAll() external onlyRole(MOE_SEAL_ROLE) { _sealAll(); } /** @return true if this contract implements the interface defined by interface-id */ function supportsInterface(bytes4 interfaceId) public view virtual override(Migratable, Supervised) returns (bool) { return super.supportsInterface(interfaceId); } } /** * Allows migration of SOV tokens from an old contract upto a certain deadline. */ abstract contract SovMigratable is Migratable, SovMigratableSupervised { /** migratable MOE tokens */ MoeMigratable private _moe; /** @param moe address of MOE tokens */ /** @param base addresses of old contracts */ /** @param deadlineIn seconds to end-of-migration */ constructor(address moe, address[] memory base, uint256 deadlineIn) Migratable(base, deadlineIn) { _moe = MoeMigratable(moe); } /** migrate amount of SOV tokens */ /// /// @dev assumes old (XPower:APower) == new (XPower:APower) w.r.t. decimals /// function _migrateFrom(address account, uint256 amount, uint256[] memory index) internal override returns (uint256) { uint256[] memory moeIndex = new uint256[](1); moeIndex[0] = index[1]; // drop sov-index uint256 newAmountSov = newUnits(amount, index[0]); uint256 migAmountSov = _premigrate(account, amount, index[0]); assert(migAmountSov == newAmountSov); uint256 newAmountMoe = moeUnits(newAmountSov); uint256 oldAmountMoe = _moe.oldUnits(newAmountMoe, moeIndex[0]); uint256 migAmountMoe = _moe.migrateFrom(account, oldAmountMoe, moeIndex); assert(_moe.transferFrom(account, (address)(this), migAmountMoe)); _mint(account, newAmountSov); return newAmountSov; } /** @return cross-converted MOE amount w.r.t. decimals */ function moeUnits(uint256 sovAmount) public view returns (uint256) { if (decimals() >= _moe.decimals()) { return sovAmount / (10 ** (decimals() - _moe.decimals())); } else { return sovAmount * (10 ** (_moe.decimals() - decimals())); } } /** @return cross-converted SOV amount w.r.t. decimals */ function sovUnits(uint256 moeAmount) public view returns (uint256) { if (decimals() >= _moe.decimals()) { return moeAmount * (10 ** (decimals() - _moe.decimals())); } else { return moeAmount / (10 ** (_moe.decimals() - decimals())); } } /** seal migration */ function seal(uint256 index) external onlyRole(SOV_SEAL_ROLE) { _seal(index); } /** seal-all migration */ function sealAll() external onlyRole(SOV_SEAL_ROLE) { _sealAll(); } /** @return true if this contract implements the interface defined by interface-id */ function supportsInterface(bytes4 interfaceId) public view virtual override(Migratable, Supervised) returns (bool) { return super.supportsInterface(interfaceId); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import {AccessControlEnumerable} from "@openzeppelin/contracts/access/AccessControlEnumerable.sol"; abstract contract Supervised is AccessControlEnumerable { constructor() { _grantRole(DEFAULT_ADMIN_ROLE, msg.sender); } /** @return true if this contract implements the interface defined by interface-id */ function supportsInterface(bytes4 interfaceId) public view virtual override returns (bool) { return super.supportsInterface(interfaceId); } } abstract contract XPowerSupervised is Supervised { /** role grants right to change treasury's share per mint */ bytes32 public constant SHARE_ROLE = keccak256("SHARE_ROLE"); bytes32 public constant SHARE_ADMIN_ROLE = keccak256("SHARE_ADMIN_ROLE"); constructor() { _setRoleAdmin(SHARE_ROLE, SHARE_ADMIN_ROLE); _grantRole(SHARE_ADMIN_ROLE, msg.sender); } } abstract contract MoeTreasurySupervised is Supervised { /** role grants right to change APR parametrization */ bytes32 public constant APR_ROLE = keccak256("APR_ROLE"); bytes32 public constant APR_ADMIN_ROLE = keccak256("APR_ADMIN_ROLE"); /** role grants right to change APB parametrization */ bytes32 public constant APB_ROLE = keccak256("APB_ROLE"); bytes32 public constant APB_ADMIN_ROLE = keccak256("APB_ADMIN_ROLE"); constructor() { _setRoleAdmin(APR_ROLE, APR_ADMIN_ROLE); _grantRole(APR_ADMIN_ROLE, msg.sender); _setRoleAdmin(APB_ROLE, APB_ADMIN_ROLE); _grantRole(APB_ADMIN_ROLE, msg.sender); } } abstract contract MoeMigratableSupervised is Supervised { /** role grants right to seal MOE migration */ bytes32 public constant MOE_SEAL_ROLE = keccak256("MOE_SEAL_ROLE"); bytes32 public constant MOE_SEAL_ADMIN_ROLE = keccak256("MOE_SEAL_ADMIN_ROLE"); constructor() { _setRoleAdmin(MOE_SEAL_ROLE, MOE_SEAL_ADMIN_ROLE); _grantRole(MOE_SEAL_ADMIN_ROLE, msg.sender); } } abstract contract SovMigratableSupervised is Supervised { /** role grants right to seal SOV migration */ bytes32 public constant SOV_SEAL_ROLE = keccak256("SOV_SEAL_ROLE"); bytes32 public constant SOV_SEAL_ADMIN_ROLE = keccak256("SOV_SEAL_ADMIN_ROLE"); constructor() { _setRoleAdmin(SOV_SEAL_ROLE, SOV_SEAL_ADMIN_ROLE); _grantRole(SOV_SEAL_ADMIN_ROLE, msg.sender); } } abstract contract NftMigratableSupervised is Supervised { /** role grants right to seal NFT immigration */ bytes32 public constant NFT_SEAL_ROLE = keccak256("NFT_SEAL_ROLE"); bytes32 public constant NFT_SEAL_ADMIN_ROLE = keccak256("NFT_SEAL_ADMIN_ROLE"); /** role grants right to open NFT emigration */ bytes32 public constant NFT_OPEN_ROLE = keccak256("NFT_OPEN_ROLE"); bytes32 public constant NFT_OPEN_ADMIN_ROLE = keccak256("NFT_OPEN_ADMIN_ROLE"); constructor() { _setRoleAdmin(NFT_SEAL_ROLE, NFT_SEAL_ADMIN_ROLE); _grantRole(NFT_SEAL_ADMIN_ROLE, msg.sender); _setRoleAdmin(NFT_OPEN_ROLE, NFT_OPEN_ADMIN_ROLE); _grantRole(NFT_OPEN_ADMIN_ROLE, msg.sender); } } abstract contract NftRoyaltySupervised is Supervised { /** role grants right to set the NFT's default royalty beneficiary */ bytes32 public constant NFT_ROYAL_ROLE = keccak256("NFT_ROYAL_ROLE"); bytes32 public constant NFT_ROYAL_ADMIN_ROLE = keccak256("NFT_ROYAL_ADMIN_ROLE"); constructor() { _setRoleAdmin(NFT_ROYAL_ROLE, NFT_ROYAL_ADMIN_ROLE); _grantRole(NFT_ROYAL_ADMIN_ROLE, msg.sender); } } abstract contract URIMalleableSupervised is Supervised { /** role grants right to change metadata URIs */ bytes32 public constant URI_DATA_ROLE = keccak256("URI_DATA_ROLE"); bytes32 public constant URI_DATA_ADMIN_ROLE = keccak256("URI_DATA_ADMIN_ROLE"); constructor() { _setRoleAdmin(URI_DATA_ROLE, URI_DATA_ADMIN_ROLE); _grantRole(URI_DATA_ADMIN_ROLE, msg.sender); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; library Constants { /** a century in [seconds] (approximation) */ uint256 internal constant CENTURY = 365_25 days; /** a year in [seconds] (approximation) */ uint256 internal constant YEAR = CENTURY / 100; /** a month [seconds] (approximation) */ uint256 internal constant MONTH = YEAR / 12; /** number of decimals of representation */ uint8 internal constant DECIMALS = 18; }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; /** * Allows to integrate over an array of (stamp, value) tuples, and to take * the duration i.e. Δ-stamp weighted arithmetic mean of those values. */ library Integrator { struct Item { /** stamp of value */ uint256 stamp; /** value of interest */ uint256 value; /** cumulative sum over Δ-stamps × values */ uint256 area; } /** @return head item */ function headOf(Item[] storage items) internal view returns (Item memory) { return items.length > 0 ? items[0] : Item(0, 0, 0); } /** @return last item */ function lastOf(Item[] storage items) internal view returns (Item memory) { return items.length > 0 ? items[items.length - 1] : Item(0, 0, 0); } /** @return next item (for stamp, value & and) */ function _nextOf(Item[] storage items, uint256 stamp, uint256 value) private view returns (Item memory) { if (items.length > 0) { Item memory last = items[items.length - 1]; require(stamp >= last.stamp, "invalid stamp"); uint256 area = value * (stamp - last.stamp); return Item(stamp, value, last.area + area); } return Item(stamp, value, 0); } /** @return Δ-stamp weighted arithmetic mean of values (incl. next stamp & value) */ function meanOf(Item[] storage items, uint256 stamp, uint256 value) internal view returns (uint256) { uint256 area = areaOf(items, stamp, value); Item memory head = headOf(items); if (stamp > head.stamp) { return area / (stamp - head.stamp); } return head.value; } /** @return area of Δ-stamps × values (incl. next stamp and value) */ function areaOf(Item[] storage items, uint256 stamp, uint256 value) internal view returns (uint256) { return _nextOf(items, stamp, value).area; } /** append (stamp, value, meta) to items (with stamp >= last?.stamp) */ function append(Item[] storage items, uint256 stamp, uint256 value) internal { items.push(_nextOf(items, stamp, value)); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import {Math} from "@openzeppelin/contracts/utils/math/Math.sol"; import {Power} from "./Power.sol"; struct Polynomial { uint256[] array; } library Polynomials { /** * @return value evaluated with {(value+[5-4])*[3/2]+[1-0]}^{[6]/8} * * Evaluates a `value` using a linear function -- defined by * the provided polynomial coefficients. */ function eval6(Polynomial memory p, uint256 value) internal pure returns (uint256) { uint256 delta = value + p.array[5] - p.array[4]; uint256 ratio = Math.mulDiv(delta, p.array[3], p.array[2]); uint256 shift = ratio + p.array[1] - p.array[0]; return Power.raise(shift, p.array[6]); } /** * @return value evaluated with {(value+[4-3])*[2/1]+[0]}^{[5]/8} * * Evaluates a `value` using a linear function -- defined by * the provided polynomial coefficients. */ function eval5(Polynomial memory p, uint256 value) internal pure returns (uint256) { uint256 delta = value + p.array[4] - p.array[3]; uint256 ratio = Math.mulDiv(delta, p.array[2], p.array[1]); return Power.raise(ratio + p.array[0], p.array[5]); } /** * @return value evaluated with {(value)*[3/2]+[1-0]}^{[4]/8} * * Evaluates a `value` using a linear function -- defined by * the provided polynomial coefficients. */ function eval4(Polynomial memory p, uint256 value) internal pure returns (uint256) { uint256 ratio = Math.mulDiv(value, p.array[3], p.array[2]); uint256 shift = ratio + p.array[1] - p.array[0]; return Power.raise(shift, p.array[4]); } /** * @return value evaluated with {(value)*[2/1]+[0]}^{[3]/8} * * Evaluates a `value` using a linear function -- defined by * the provided polynomial coefficients. */ function eval3(Polynomial memory p, uint256 value) internal pure returns (uint256) { uint256 ratio = Math.mulDiv(value, p.array[2], p.array[1]); return Power.raise(ratio + p.array[0], p.array[3]); } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import {UD60x18, ud, pow} from "@prb/math/src/UD60x18.sol"; library Power { /** * @return n raised to the power of (exp/[root=256]) */ function raise(uint256 n, uint256 exp) internal pure returns (uint256) { require(exp >= 128, "invalid exponent: too small"); require(exp <= 512, "invalid exponent: too large"); UD60x18 p = pow(ud(n * 1e18), ud(exp * 3906250e9)); return p.intoUint256() / 1e18; } }
// SPDX-License-Identifier: GPL-3.0 pragma solidity ^0.8.0; import {Constants} from "../libs/Constants.sol"; /** * @title Rug pull protection */ library Rpp { /** validate params: w.r.t. Polynomial.eval3 */ function checkArray(uint256[] memory array) internal pure { require(array.length == 4, "invalid array.length"); // eliminate possibility of division-by-zero require(array[1] > 0, "invalid array[1] == 0"); // eliminate possibility of all-zero values require(array[2] > 0, "invalid array[2] == 0"); } /** validate change: 0.5 <= next / last <= 2.0 or next <= unit */ function checkValue(uint256 next, uint256 last, uint256 unit) internal pure { if (next < last) { require(last <= 2 * next, "invalid change: too small"); } if (next > last && last > 0) { require(next <= 2 * last, "invalid change: too large"); } if (next > last && last == 0) { require(next <= unit, "invalid change: too large"); } } /** validate change: invocation frequency at most once per month */ function checkStamp(uint256 next, uint256 last) internal pure { if (last > 0) { require(next > Constants.MONTH + last, "invalid change: too frequent"); } } }
{ "optimizer": { "enabled": true, "runs": 200 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "libraries": {} }
Contract Security Audit
- No Contract Security Audit Submitted- Submit Audit Here
Contract ABI
API[{"inputs":[{"internalType":"address[]","name":"moeBase","type":"address[]"},{"internalType":"uint256","name":"deadlineIn","type":"uint256"}],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[{"internalType":"uint256","name":"x","type":"uint256"},{"internalType":"uint256","name":"y","type":"uint256"}],"name":"PRBMath_MulDiv18_Overflow","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Exp2_InputTooBig","type":"error"},{"inputs":[{"internalType":"UD60x18","name":"x","type":"uint256"}],"name":"PRBMath_UD60x18_Log_InputTooSmall","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"bytes32","name":"blockHash","type":"bytes32"},{"indexed":false,"internalType":"uint256","name":"timestamp","type":"uint256"}],"name":"Init","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"previousAdminRole","type":"bytes32"},{"indexed":true,"internalType":"bytes32","name":"newAdminRole","type":"bytes32"}],"name":"RoleAdminChanged","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleGranted","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"bytes32","name":"role","type":"bytes32"},{"indexed":true,"internalType":"address","name":"account","type":"address"},{"indexed":true,"internalType":"address","name":"sender","type":"address"}],"name":"RoleRevoked","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"DEFAULT_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MOE_SEAL_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MOE_SEAL_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_ADMIN_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SHARE_ROLE","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"level","type":"uint256"}],"name":"amountOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"interval","type":"uint256"}],"name":"blockHashOf","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"currentInterval","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"subtractedValue","type":"uint256"}],"name":"decreaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"fees","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleAdmin","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"getRoleMember","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"}],"name":"getRoleMemberCount","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getShare","outputs":[{"internalType":"uint256[]","name":"","type":"uint256[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"grantRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"hasRole","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes32","name":"blockHash","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"hashOf","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"},{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"addedValue","type":"uint256"}],"name":"increaseAllowance","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"init","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256[]","name":"index","type":"uint256[]"}],"name":"migrate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256[]","name":"index","type":"uint256[]"}],"name":"migrateFrom","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"migrated","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"bytes32","name":"blockHash","type":"bytes32"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"mint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"oldAmount","type":"uint256"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"newUnits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"base","type":"address"}],"name":"oldIndexOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"newAmount","type":"uint256"},{"internalType":"uint256","name":"index","type":"uint256"}],"name":"oldUnits","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"blockHash","type":"bytes32"}],"name":"recent","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"renounceRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"role","type":"bytes32"},{"internalType":"address","name":"account","type":"address"}],"name":"revokeRole","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"index","type":"uint256"}],"name":"seal","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"sealAll","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"seals","outputs":[{"internalType":"bool[]","name":"","type":"bool[]"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256[]","name":"array","type":"uint256[]"}],"name":"setShare","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"shareOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"shareTargetOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"","type":"uint256"}],"name":"shares","outputs":[{"internalType":"uint256","name":"stamp","type":"uint256"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"area","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes4","name":"interfaceId","type":"bytes4"}],"name":"supportsInterface","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"from","type":"address"},{"internalType":"address","name":"to","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bytes32","name":"pairIndex","type":"bytes32"}],"name":"unique","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"bytes32","name":"nonceHash","type":"bytes32"}],"name":"zerosOf","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"pure","type":"function"}]
Contract Creation Code
60806040523480156200001157600080fd5b5060405162004a6338038062004a63833981016040819052620000349162000636565b8181604051806040016040528060068152602001652c2837bbb2b960d11b8152506040518060400160405280600481526020016358504f5760e01b81525081600390816200008391906200079e565b5060046200009282826200079e565b50620000a49150600090503362000301565b620000b0814262000880565b60095581516001600160401b03811115620000cf57620000cf62000603565b604051908082528060200260200182016040528015620000f9578160200160208202803683370190505b5080516200011091600791602090910190620004e0565b5081516001600160401b038111156200012d576200012d62000603565b60405190808252806020026020018201604052801562000157578160200160208202803683370190505b5080516200016e91600a916020909101906200054a565b5060005b8251811015620002395782818151811062000191576200019162000896565b602002602001015160078281548110620001af57620001af62000896565b9060005260206000200160006101000a8154816001600160a01b0302191690836001600160a01b031602179055508060086000858481518110620001f757620001f762000896565b60200260200101516001600160a01b03166001600160a01b031681526020019081526020016000208190555080806200023090620008ac565b91505062000172565b5050506200027d7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb60008051602062004a238339815191526200032c60201b60201c565b6200029860008051602062004a238339815191523362000301565b620002d37f3efceb6119340bd5a1c0a6530e52c792633ea9aaf37bc59a87c63d7af29fbbc960008051602062004a438339815191526200032c565b620002ee60008051602062004a438339815191523362000301565b620002f93362000377565b5050620008c8565b6200030d8282620003c9565b60008281526006602052604090206200032790826200046e565b505050565b600082815260056020526040808220600101805490849055905190918391839186917fbd79b86ffe0ab8e8776151514217cd7cacd52c909f66475c3af44e129f0b00ff9190a4505050565b600e80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b60008281526005602090815260408083206001600160a01b038516845290915290205460ff166200046a5760008281526005602090815260408083206001600160a01b03851684529091529020805460ff19166001179055620004293390565b6001600160a01b0316816001600160a01b0316837f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45b5050565b600062000485836001600160a01b0384166200048e565b90505b92915050565b6000818152600183016020526040812054620004d75750815460018181018455600084815260208082209093018490558454848252828601909352604090209190915562000488565b50600062000488565b82805482825590600052602060002090810192821562000538579160200282015b828111156200053857825182546001600160a01b0319166001600160a01b0390911617825560209092019160019091019062000501565b5062000546929150620005ec565b5090565b82805482825590600052602060002090601f01602090048101928215620005385791602002820160005b83821115620005b357835183826101000a81548160ff021916908315150217905550926020019260010160208160000104928301926001030262000574565b8015620005e25782816101000a81549060ff0219169055600101602081600001049283019260010302620005b3565b5050620005469291505b5b80821115620005465760008155600101620005ed565b634e487b7160e01b600052604160045260246000fd5b80516001600160a01b03811681146200063157600080fd5b919050565b600080604083850312156200064a57600080fd5b82516001600160401b03808211156200066257600080fd5b818501915085601f8301126200067757600080fd5b81516020828211156200068e576200068e62000603565b8160051b604051601f19603f83011681018181108682111715620006b657620006b662000603565b604052928352818301935084810182019289841115620006d557600080fd5b948201945b83861015620006fe57620006ee8662000619565b85529482019493820193620006da565b97909101519698969750505050505050565b600181811c908216806200072557607f821691505b6020821081036200074657634e487b7160e01b600052602260045260246000fd5b50919050565b601f8211156200032757600081815260208120601f850160051c81016020861015620007755750805b601f850160051c820191505b81811015620007965782815560010162000781565b505050505050565b81516001600160401b03811115620007ba57620007ba62000603565b620007d281620007cb845462000710565b846200074c565b602080601f8311600181146200080a5760008415620007f15750858301515b600019600386901b1c1916600185901b17855562000796565b600085815260208120601f198616915b828110156200083b578886015182559484019460019091019084016200081a565b50858210156200085a5787850151600019600388901b60f8161c191681555b5050505050600190811b01905550565b634e487b7160e01b600052601160045260246000fd5b808201808211156200048857620004886200086a565b634e487b7160e01b600052603260045260246000fd5b600060018201620008c157620008c16200086a565b5060010190565b61414b80620008d86000396000f3fe608060405234801561001057600080fd5b50600436106103275760003560e01c806370a08231116101b8578063a457c2d711610104578063d547741f116100a2578063e8eb22841161007c578063e8eb228414610762578063f2fde38b14610775578063f544c35e14610788578063fad1919a146107b157600080fd5b8063d547741f14610734578063dd62ed3e14610747578063e1c7392a1461075a57600080fd5b8063a98d03b2116100de578063a98d03b2146106c3578063b6483bab146106e7578063bb140470146106fa578063ca15c8731461072157600080fd5b8063a457c2d71461068a578063a57636b81461069d578063a9059cbb146106b057600080fd5b806386fe212d1161017157806391d148541161014b57806391d148541461065f57806395d89b41146106725780639af1d35a1461067a578063a217fddf1461068257600080fd5b806386fe212d146106145780638da5cb5b146106275780639010d07c1461064c57600080fd5b806370a0823114610595578063715018a6146105be57806375298734146105c65780637766912d146105db57806379cc6790146105ee5780637d91043f1461060157600080fd5b806326ca291b11610277578063363487bc11610230578063395093511161020a578063395093511461052e57806342966c681461054157806357a858fc146105545780636c9efc911461058257600080fd5b8063363487bc1461050057806336568abe1461050857806339444ffe1461051b57600080fd5b806326ca291b1461048357806326d71d88146104965780632c678c64146104bd5780632f2ff15d146104c5578063313ce567146104d8578063320974b2146104ed57600080fd5b80630c7fa13e116102e45780631a5d8b49116102be5780631a5d8b491461041257806321a606351461043a57806323b872dd1461044d578063248a9ca31461046057600080fd5b80630c7fa13e146103d957806318160ddd146103e3578063195e2ae4146103eb57600080fd5b806301ffc9a71461032c57806306fdde0314610354578063080e13011461036957806308560eca1461038a578063095ea7b31461039f5780630a99e88a146103b2575b600080fd5b61033f61033a366004613968565b6107d1565b60405190151581526020015b60405180910390f35b61035c6107e2565b60405161034b91906139b6565b61037c610377366004613aa5565b610874565b60405190815260200161034b565b610392610888565b60405161034b9190613aec565b61033f6103ad366004613b4e565b6108ff565b61037c7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb81565b6103e1610917565b005b60025461037c565b61037c7f3efceb6119340bd5a1c0a6530e52c792633ea9aaf37bc59a87c63d7af29fbbc981565b610425610420366004613b78565b61094c565b6040805192835260208301919091520161034b565b61033f610448366004613c27565b61098f565b61033f61045b366004613c40565b6109b2565b61037c61046e366004613c27565b60009081526005602052604090206001015490565b61037c610491366004613c27565b6109d6565b61037c7f6ff92aee9c9f4e39dc206872db9efdc37eacf3ea4e04ae77b7e68d993e2081fb81565b600b5461037c565b6103e16104d3366004613c7c565b610a34565b60125b60405160ff909116815260200161034b565b61037c6104fb366004613c27565b610a5e565b61037c610a71565b6103e1610516366004613c7c565b610a8e565b61037c610529366004613ca8565b610b11565b61033f61053c366004613b4e565b610cf6565b6103e161054f366004613c27565b610d18565b610567610562366004613c27565b610d22565b6040805193845260208401929092529082015260600161034b565b61037c610590366004613ca8565b610d55565b61037c6105a3366004613cca565b6001600160a01b031660009081526020819052604090205490565b6103e1610ef9565b6105ce610f0d565b60405161034b9190613ce5565b61037c6105e9366004613d1d565b610ff8565b6103e16105fc366004613b4e565b61100d565b6104db61060f366004613c27565b611022565b6103e1610622366004613c27565b611049565b600e546001600160a01b03165b6040516001600160a01b03909116815260200161034b565b61063461065a366004613ca8565b61107c565b61033f61066d366004613c7c565b611094565b61035c6110bf565b6105ce6110ce565b61037c600081565b61033f610698366004613b4e565b6110ef565b6103e16106ab366004613d74565b61116a565b61033f6106be366004613b4e565b61121b565b61033f6106d1366004613c27565b6000908152600f602052604090205460ff161590565b6103e16106f5366004613b78565b611229565b61037c7f7df1fa30796d39d0e882422146943ee011c6f6b410f211570cc3a712e3e51e6a81565b61037c61072f366004613c27565b6113a5565b6103e1610742366004613c7c565b6113bc565b61037c610755366004613da9565b6113e1565b6103e161140c565b61037c610770366004613c27565b611518565b6103e1610783366004613cca565b611547565b61037c610796366004613cca565b6001600160a01b031660009081526008602052604090205490565b61037c6107bf366004613c27565b60009081526011602052604090205490565b60006107dc826115bd565b92915050565b6060600380546107f190613dd3565b80601f016020809104026020016040519081016040528092919081815260200182805461081d90613dd3565b801561086a5780601f1061083f5761010080835404028352916020019161086a565b820191906000526020600020905b81548152906001019060200180831161084d57829003601f168201915b5050505050905090565b60006108813384846115c8565b9392505050565b6060600a80548060200260200160405190810160405280929190818152602001828054801561086a57602002820191906000526020600020906000905b825461010083900a900460ff1615158152602060019283018181049485019490930390920291018084116108c55790505050505050905090565b60003361090d8185856116ad565b5060019392505050565b7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb610941816117d1565b6109496117db565b50565b600080600085301860601b858560405160200161096b93929190613e0d565b60408051808303601f19018152919052805160209091012096948718955050505050565b6000610999610a71565b6000928352601060205260409092205491909111919050565b6000336109c0858285611839565b6109cb8585856118ad565b506001949350505050565b60125460009081036109eb576107dc82610a5e565b4260006109fb6104fb6001611518565b90506000610a0b60128484611a51565b9050610a176001611518565b610a218683613e5f565b610a2b9190613e8c565b95945050505050565b600082815260056020526040902060010154610a4f816117d1565b610a598383611aa4565b505050565b60006107dc82610a6c610f0d565b611ac6565b6000610a7f610e1042613ea0565b610a899042613eb4565b905090565b6001600160a01b0381163314610b035760405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b60648201526084015b60405180910390fd5b610b0d8282611ae1565b5050565b600060078281548110610b2657610b26613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610b74573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b989190613edd565b60ff16601210610c505760078281548110610bb557610bb5613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610c03573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c279190613edd565b60125b610c349190613f00565b610c3f90600a613ffd565b610c499084613e8c565b90506107dc565b601260078381548110610c6557610c65613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610cb3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cd79190613edd565b610ce19190613f00565b610cec90600a613ffd565b610c499084613e5f565b60003361090d818585610d0983836113e1565b610d13919061400c565b6116ad565b6109493382611b03565b60128181548110610d3257600080fd5b600091825260209091206003909102018054600182015460029092015490925083565b600060078281548110610d6a57610d6a613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610db8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ddc9190613edd565b60ff16601210610e725760078281548110610df957610df9613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610e47573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e6b9190613edd565b6012610cd7565b601260078381548110610e8757610e87613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610ed5573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c2a9190613edd565b610f01611c35565b610f0b6000611c8f565b565b60135460609015610f6d57601380548060200260200160405190810160405280929190818152602001828054801561086a57602002820191906000526020600020905b815481526020019060010190808311610f50575050505050905090565b60408051600480825260a0820190925260009160208201608080368337019050509050600281600181518110610fa557610fa5613ec7565b602002602001018181525050600181600281518110610fc657610fc6613ec7565b60200260200101818152505061010081600381518110610fe857610fe8613ec7565b6020908102919091010152919050565b60006110058484846115c8565b949350505050565b611018823383611839565b610b0d8282611b03565b6000811561104157600261103583611ce1565b6107dc911c603f613eb4565b506040919050565b7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb611073816117d1565b610b0d82611d75565b60008281526006602052604081206108819083611db6565b60009182526005602090815260408084206001600160a01b0393909316845291905290205460ff1690565b6060600480546107f190613dd3565b6060610a896516750de3880066252176e4c529f9662386f26fc10000611dc2565b600033816110fd82866113e1565b90508381101561115d5760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610afa565b6109cb82868684036116ad565b7f3efceb6119340bd5a1c0a6530e52c792633ea9aaf37bc59a87c63d7af29fbbc9611194816117d1565b61119d82611e8b565b60006111b26111ac6001611518565b84611ac6565b905060006111c36104fb6001611518565b90506111d982826111d46001611518565b611f97565b60006111e560126120c1565b519050426111f3818361216b565b6111ff601282856121e5565b8551611212906013906020890190613908565b50505050505050565b60003361090d8185856118ad565b60005a90506112378361098f565b6112785760405162461bcd60e51b81526020600482015260126024820152710caf0e0d2e4cac840c4d8dec6d65ad0c2e6d60731b6044820152606401610afa565b60008061128686868661094c565b6000818152600f6020526040902054919350915060ff16156112e15760405162461bcd60e51b81526020600482015260146024820152730c8eae0d8d2c6c2e8ca40dcdedcc6ca5ad0c2e6d60631b6044820152606401610afa565b60006112ec83611022565b60ff169050600081116113345760405162461bcd60e51b815260206004820152601060248201526f0cadae0e8f240dcdedcc6ca5ad0c2e6d60831b6044820152606401610afa565b600061133f82611518565b6000848152600f60205260409020805460ff19166001179055905061137d61136f600e546001600160a01b031690565b611378836109d6565b61222a565b611387888261222a565b5050505061139f5a6113999083613eb4565b3a6122e9565b50505050565b60008181526006602052604081206107dc9061234b565b6000828152600560205260409020600101546113d7816117d1565b610a598383611ae1565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6000611416610a71565b9050600081116114285761142861401f565b60008181526011602052604081205490036114c657600061144a600143613eb4565b4090508061145a5761145a61401f565b42806114685761146861401f565b6000828152601060209081526040808320849055858352601182529182902084905581518481529081018390527f2c6c5a9e4f0ddd70b42bd7fcac74128409018755c234dc0d2d29c66eb6335c9a91015b60405180910390a1505050565b6000818152601160209081526040808320548084526010835292819020548151848152928301819052917f2c6c5a9e4f0ddd70b42bd7fcac74128409018755c234dc0d2d29c66eb6335c9a91016114b9565b60006115266012600a613ffd565b6001611533846002614035565b61153d9190613eb4565b6107dc9190613e5f565b61154f611c35565b6001600160a01b0381166115b45760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610afa565b61094981611c8f565b60006107dc82612355565b600080611678846007856000815181106115e4576115e4613ec7565b6020026020010151815481106115fc576115fc613ec7565b6000918252602090912001546040516370a0823160e01b81526001600160a01b038981166004830152909116906370a0823190602401602060405180830381865afa15801561164f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116739190614041565b612395565b905060006116a186838660008151811061169457611694613ec7565b60200260200101516123ab565b9050610a2b868261222a565b6001600160a01b03831661170f5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610afa565b6001600160a01b0382166117705760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610afa565b6001600160a01b0383811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b6109498133612530565b60005b600a54811015610949576001600a82815481106117fd576117fd613ec7565b90600052602060002090602091828204019190066101000a81548160ff02191690831515021790555080806118319061405a565b9150506117de565b600061184584846113e1565b9050600019811461139f57818110156118a05760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152606401610afa565b61139f84848484036116ad565b6001600160a01b0383166119115760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610afa565b6001600160a01b0382166119735760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610afa565b6001600160a01b038316600090815260208190526040902054818110156119eb5760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610afa565b6001600160a01b03848116600081815260208181526040808320878703905593871680835291849020805487019055925185815290927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a361139f565b600080611a5f858585612589565b90506000611a6c866125a2565b8051909150851115611a97578051611a849086613eb4565b611a8e9083613e8c565b92505050610881565b6020015195945050505050565b611aae8282612602565b6000828152600660205260409020610a599082612688565b6040805160208101909152818152600090610881908461269d565b611aeb8282612738565b6000828152600660205260409020610a59908261279f565b6001600160a01b038216611b635760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610afa565b6001600160a01b03821660009081526020819052604090205481811015611bd75760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610afa565b6001600160a01b0383166000818152602081815260408083208686039055600280548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a3505050565b600e546001600160a01b03163314610f0b5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610afa565b600e80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600080608083901c15611cf657608092831c92015b604083901c15611d0857604092831c92015b602083901c15611d1a57602092831c92015b601083901c15611d2c57601092831c92015b600883901c15611d3e57600892831c92015b600483901c15611d5057600492831c92015b600283901c15611d6257600292831c92015b600183901c156107dc5760010192915050565b6001600a8281548110611d8a57611d8a613ec7565b90600052602060002090602091828204019190066101000a81548160ff02191690831515021790555050565b600061088183836127b4565b60408051600380825260808201909252606091600091906020820184803683375050600d5482519293509182915083906002908110611e0357611e03613ec7565b6020908102919091010152600c548251819084906001908110611e2857611e28613ec7565b60209081029190910101526000611e3f8284613e5f565b90508587611e4d8a8461400c565b611e579190613e5f565b611e619190613e8c565b84600081518110611e7457611e74613ec7565b602090810291909101015250919695505050505050565b8051600414611ed35760405162461bcd60e51b81526020600482015260146024820152730d2dcecc2d8d2c840c2e4e4c2f25cd8cadccee8d60631b6044820152606401610afa565b600081600181518110611ee857611ee8613ec7565b602002602001015111611f355760405162461bcd60e51b81526020600482015260156024820152740696e76616c69642061727261795b315d203d3d203605c1b6044820152606401610afa565b600081600281518110611f4a57611f4a613ec7565b6020026020010151116109495760405162461bcd60e51b81526020600482015260156024820152740696e76616c69642061727261795b325d203d3d203605c1b6044820152606401610afa565b81831015611ff957611faa836002613e5f565b821115611ff95760405162461bcd60e51b815260206004820152601960248201527f696e76616c6964206368616e67653a20746f6f20736d616c6c000000000000006044820152606401610afa565b81831180156120085750600082115b1561206357612018826002613e5f565b8311156120635760405162461bcd60e51b8152602060048201526019602482015278696e76616c6964206368616e67653a20746f6f206c6172676560381b6044820152606401610afa565b8183118015612070575081155b15610a595780831115610a595760405162461bcd60e51b8152602060048201526019602482015278696e76616c6964206368616e67653a20746f6f206c6172676560381b6044820152606401610afa565b6120e560405180606001604052806000815260200160008152602001600081525090565b815461210e576040518060600160405280600081526020016000815260200160008152506107dc565b8154829061211e90600190613eb4565b8154811061212e5761212e613ec7565b9060005260206000209060030201604051806060016040529081600082015481526020016001820154815260200160028201548152505092915050565b8015610b0d5780600c612183606463bc191380613e8c565b61218d9190613e8c565b612197919061400c565b8211610b0d5760405162461bcd60e51b815260206004820152601c60248201527f696e76616c6964206368616e67653a20746f6f206672657175656e74000000006044820152606401610afa565b826121f18484846127de565b81546001818101845560009384526020938490208351600390930201918255928201519281019290925560400151600290910155505050565b6001600160a01b0382166122805760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152606401610afa565b8060026000828254612292919061400c565b90915550506001600160a01b038216600081815260208181526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b600c5480156123135760046122ff82600f613e5f565b612309908561400c565b901c600c55612319565b600c8390555b600d54801561234357600461232f82600f613e5f565b612339908561400c565b901c600d5561139f565b5050600d5550565b60006107dc825490565b60006001600160e01b031982166336372b0760e01b148061238657506001600160e01b0319821663a219a02560e01b145b806107dc57506107dc82612918565b60008183106123a45781610881565b5090919050565b6000600a82815481106123c0576123c0613ec7565b90600052602060002090602091828204019190069054906101000a900460ff16156124205760405162461bcd60e51b815260206004820152601060248201526f1b5a59dc985d1a5bdb881cd9585b195960821b6044820152606401610afa565b60095442908111156124665760405162461bcd60e51b815260206004820152600f60248201526e191958591b1a5b99481c185cdcd959608a1b6044820152606401610afa565b6007838154811061247957612479613ec7565b60009182526020909120015460405163079cc67960e41b81526001600160a01b03878116600483015260248201879052909116906379cc679090604401600060405180830381600087803b1580156124d057600080fd5b505af11580156124e4573d6000803e3d6000fd5b5050505060008411806124f5575083155b6125015761250161401f565b600061250d8585610d55565b905080600b6000828254612521919061400c565b90915550909695505050505050565b61253a8282611094565b610b0d5761254781612923565b612552836020612935565b604051602001612563929190614073565b60408051601f198184030181529082905262461bcd60e51b8252610afa916004016139b6565b60006125968484846127de565b60400151949350505050565b6125c660405180606001604052806000815260200160008152602001600081525090565b81546125ef576040518060600160405280600081526020016000815260200160008152506107dc565b8160008154811061212e5761212e613ec7565b61260c8282611094565b610b0d5760008281526005602090815260408083206001600160a01b03851684529091529020805460ff191660011790556126443390565b6001600160a01b0316816001600160a01b0316837f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45050565b6000610881836001600160a01b038416612ad1565b6000806126e78385600001516002815181106126bb576126bb613ec7565b602002602001015186600001516001815181106126da576126da613ec7565b6020026020010151612b20565b9050611005846000015160008151811061270357612703613ec7565b602002602001015182612716919061400c565b85518051600390811061272b5761272b613ec7565b6020026020010151612c0a565b6127428282611094565b15610b0d5760008281526005602090815260408083206001600160a01b0385168085529252808320805460ff1916905551339285917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a45050565b6000610881836001600160a01b038416612cf9565b60008260000182815481106127cb576127cb613ec7565b9060005260206000200154905092915050565b61280260405180606001604052806000815260200160008152602001600081525090565b8354156128f7578354600090859061281c90600190613eb4565b8154811061282c5761282c613ec7565b90600052602060002090600302016040518060600160405290816000820154815260200160018201548152602001600282015481525050905080600001518410156128a95760405162461bcd60e51b815260206004820152600d60248201526c0696e76616c6964207374616d7609c1b6044820152606401610afa565b80516000906128b89086613eb4565b6128c29085613e5f565b905060405180606001604052808681526020018581526020018284604001516128eb919061400c565b81525092505050610881565b50604080516060810182529283526020830191909152600090820152919050565b60006107dc82612dec565b60606107dc6001600160a01b03831660145b60606000612944836002613e5f565b61294f90600261400c565b67ffffffffffffffff811115612967576129676139e9565b6040519080825280601f01601f191660200182016040528015612991576020820181803683370190505b509050600360fc1b816000815181106129ac576129ac613ec7565b60200101906001600160f81b031916908160001a905350600f60fb1b816001815181106129db576129db613ec7565b60200101906001600160f81b031916908160001a90535060006129ff846002613e5f565b612a0a90600161400c565b90505b6001811115612a82576f181899199a1a9b1b9c1cb0b131b232b360811b85600f1660108110612a3e57612a3e613ec7565b1a60f81b828281518110612a5457612a54613ec7565b60200101906001600160f81b031916908160001a90535060049490941c93612a7b816140e8565b9050612a0d565b5083156108815760405162461bcd60e51b815260206004820181905260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152606401610afa565b6000818152600183016020526040812054612b18575081546001818101845560008481526020808220909301849055845484825282860190935260409020919091556107dc565b5060006107dc565b6000808060001985870985870292508281108382030391505080600003612b5a57838281612b5057612b50613e76565b0492505050610881565b808411612ba15760405162461bcd60e51b81526020600482015260156024820152744d6174683a206d756c446976206f766572666c6f7760581b6044820152606401610afa565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b60006080821015612c5d5760405162461bcd60e51b815260206004820152601b60248201527f696e76616c6964206578706f6e656e743a20746f6f20736d616c6c00000000006044820152606401610afa565b610200821115612caf5760405162461bcd60e51b815260206004820152601b60248201527f696e76616c6964206578706f6e656e743a20746f6f206c6172676500000000006044820152606401610afa565b6000612ce5612ccc612cc986670de0b6b3a7640000613e5f565b90565b612ce0612cc986660de0b6b3a76400613e5f565b612e11565b9050611005670de0b6b3a764000082613e8c565b60008181526001830160205260408120548015612de2576000612d1d600183613eb4565b8554909150600090612d3190600190613eb4565b9050818114612d96576000866000018281548110612d5157612d51613ec7565b9060005260206000200154905080876000018481548110612d7457612d74613ec7565b6000918252602080832090910192909255918252600188019052604090208390555b8554869080612da757612da76140ff565b6001900381819060005260206000200160009055905585600101600086815260200190815260200160002060009055600193505050506107dc565b60009150506107dc565b60006001600160e01b03198216635a05180f60e01b14806107dc57506107dc82612f23565b60008282818303612e3c578015612e29576000612e33565b670de0b6b3a76400005b925050506107dc565b670de0b6b3a76400008203612e5d57670de0b6b3a7640000925050506107dc565b80600003612e7757670de0b6b3a7640000925050506107dc565b670de0b6b3a76400008103612e905784925050506107dc565b670de0b6b3a7640000821115612ec157612eba612eb5612eaf87612f58565b8661308d565b61309c565b9250612f1b565b6000612edf612cc9846ec097ce7bc90715b34b9f1000000000613e8c565b90506000612ef8612eb5612ef284612f58565b8861308d565b9050612f16612cc9826ec097ce7bc90715b34b9f1000000000613e8c565b945050505b505092915050565b60006001600160e01b03198216637965db0b60e01b14806107dc57506301ffc9a760e01b6001600160e01b03198316146107dc565b600081670de0b6b3a7640000811015612f875760405163036d32ef60e41b815260048101849052602401610afa565b6000613013670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c670de0b6b3a763ffff19810161303c5750949350505050565b671bc16d674ec800006706f05b59d3b200005b801561307f57670de0b6b3a7640000838002049250818310613077579283019260019290921c915b60011c61304f565b50825b979650505050505050565b6000610881612cc984846130f2565b600081680a688906bd8affffff8111156130cc5760405163b3b6ba1f60e01b815260048101849052602401610afa565b60006130e4670de0b6b3a7640000604084901b613e8c565b9050611005612cc9826131a8565b60008080600019848609848602925082811083820303915050806000036131265750670de0b6b3a7640000900490506107dc565b670de0b6b3a7640000811061315857604051635173648d60e01b81526004810186905260248101859052604401610afa565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600160bf1b67ff000000000000008216156132b5576780000000000000008216156131dc5768016a09e667f3bcc9090260401c5b6740000000000000008216156131fb576801306fe0a31b7152df0260401c5b67200000000000000082161561321a576801172b83c7d517adce0260401c5b6710000000000000008216156132395768010b5586cf9890f62a0260401c5b670800000000000000821615613258576801059b0d31585743ae0260401c5b67040000000000000082161561327757680102c9a3e778060ee70260401c5b6702000000000000008216156132965768010163da9fb33356d80260401c5b6701000000000000008216156132b557680100b1afa5abcbed610260401c5b66ff0000000000008216156133b45766800000000000008216156132e25768010058c86da1c09ea20260401c5b6640000000000000821615613300576801002c605e2e8cec500260401c5b662000000000000082161561331e57680100162f3904051fa10260401c5b661000000000000082161561333c576801000b175effdc76ba0260401c5b660800000000000082161561335a57680100058ba01fb9f96d0260401c5b66040000000000008216156133785768010002c5cc37da94920260401c5b6602000000000000821615613396576801000162e525ee05470260401c5b66010000000000008216156133b45768010000b17255775c040260401c5b65ff00000000008216156134aa57658000000000008216156133df576801000058b91b5bc9ae0260401c5b654000000000008216156133fc57680100002c5c89d5ec6d0260401c5b652000000000008216156134195768010000162e43f4f8310260401c5b6510000000000082161561343657680100000b1721bcfc9a0260401c5b650800000000008216156134535768010000058b90cf1e6e0260401c5b65040000000000821615613470576801000002c5c863b73f0260401c5b6502000000000082161561348d57680100000162e430e5a20260401c5b650100000000008216156134aa576801000000b1721835510260401c5b64ff00000000821615613597576480000000008216156134d357680100000058b90c0b490260401c5b6440000000008216156134ef5768010000002c5c8601cc0260401c5b64200000000082161561350b576801000000162e42fff00260401c5b6410000000008216156135275768010000000b17217fbb0260401c5b640800000000821615613543576801000000058b90bfce0260401c5b64040000000082161561355f57680100000002c5c85fe30260401c5b64020000000082161561357b5768010000000162e42ff10260401c5b64010000000082161561359757680100000000b17217f80260401c5b63ff00000082161561367b5763800000008216156135be5768010000000058b90bfc0260401c5b63400000008216156135d9576801000000002c5c85fe0260401c5b63200000008216156135f457680100000000162e42ff0260401c5b631000000082161561360f576801000000000b17217f0260401c5b630800000082161561362a57680100000000058b90c00260401c5b63040000008216156136455768010000000002c5c8600260401c5b6302000000821615613660576801000000000162e4300260401c5b630100000082161561367b5768010000000000b172180260401c5b62ff000082161561375657628000008216156136a0576801000000000058b90c0260401c5b624000008216156136ba57680100000000002c5c860260401c5b622000008216156136d45768010000000000162e430260401c5b621000008216156136ee57680100000000000b17210260401c5b620800008216156137085768010000000000058b910260401c5b62040000821615613722576801000000000002c5c80260401c5b6202000082161561373c57680100000000000162e40260401c5b62010000821615613756576801000000000000b1720260401c5b61ff008216156138285761800082161561377957680100000000000058b90260401c5b6140008216156137925768010000000000002c5d0260401c5b6120008216156137ab576801000000000000162e0260401c5b6110008216156137c45768010000000000000b170260401c5b6108008216156137dd576801000000000000058c0260401c5b6104008216156137f657680100000000000002c60260401c5b61020082161561380f57680100000000000001630260401c5b61010082161561382857680100000000000000b10260401c5b60ff8216156138f157608082161561384957680100000000000000590260401c5b6040821615613861576801000000000000002c0260401c5b602082161561387957680100000000000000160260401c5b6010821615613891576801000000000000000b0260401c5b60088216156138a957680100000000000000060260401c5b60048216156138c157680100000000000000030260401c5b60028216156138d957680100000000000000010260401c5b60018216156138f157680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b828054828255906000526020600020908101928215613943579160200282015b82811115613943578251825591602001919060010190613928565b5061394f929150613953565b5090565b5b8082111561394f5760008155600101613954565b60006020828403121561397a57600080fd5b81356001600160e01b03198116811461088157600080fd5b60005b838110156139ad578181015183820152602001613995565b50506000910152565b60208152600082518060208401526139d5816040850160208701613992565b601f01601f19169190910160400192915050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff81118282101715613a2857613a286139e9565b604052919050565b600082601f830112613a4157600080fd5b8135602067ffffffffffffffff821115613a5d57613a5d6139e9565b8160051b613a6c8282016139ff565b9283528481018201928281019087851115613a8657600080fd5b83870192505b8483101561308257823582529183019190830190613a8c565b60008060408385031215613ab857600080fd5b82359150602083013567ffffffffffffffff811115613ad657600080fd5b613ae285828601613a30565b9150509250929050565b6020808252825182820181905260009190848201906040850190845b81811015613b26578351151583529284019291840191600101613b08565b50909695505050505050565b80356001600160a01b0381168114613b4957600080fd5b919050565b60008060408385031215613b6157600080fd5b613b6a83613b32565b946020939093013593505050565b600080600060608486031215613b8d57600080fd5b613b9684613b32565b92506020808501359250604085013567ffffffffffffffff80821115613bbb57600080fd5b818701915087601f830112613bcf57600080fd5b813581811115613be157613be16139e9565b613bf3601f8201601f191685016139ff565b91508082528884828501011115613c0957600080fd5b80848401858401376000848284010152508093505050509250925092565b600060208284031215613c3957600080fd5b5035919050565b600080600060608486031215613c5557600080fd5b613c5e84613b32565b9250613c6c60208501613b32565b9150604084013590509250925092565b60008060408385031215613c8f57600080fd5b82359150613c9f60208401613b32565b90509250929050565b60008060408385031215613cbb57600080fd5b50508035926020909101359150565b600060208284031215613cdc57600080fd5b61088182613b32565b6020808252825182820181905260009190848201906040850190845b81811015613b2657835183529284019291840191600101613d01565b600080600060608486031215613d3257600080fd5b613d3b84613b32565b925060208401359150604084013567ffffffffffffffff811115613d5e57600080fd5b613d6a86828701613a30565b9150509250925092565b600060208284031215613d8657600080fd5b813567ffffffffffffffff811115613d9d57600080fd5b61100584828501613a30565b60008060408385031215613dbc57600080fd5b613dc583613b32565b9150613c9f60208401613b32565b600181811c90821680613de757607f821691505b602082108103613e0757634e487b7160e01b600052602260045260246000fd5b50919050565b6bffffffffffffffffffffffff198416815282601482015260008251613e3a816034850160208701613992565b91909101603401949350505050565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176107dc576107dc613e49565b634e487b7160e01b600052601260045260246000fd5b600082613e9b57613e9b613e76565b500490565b600082613eaf57613eaf613e76565b500690565b818103818111156107dc576107dc613e49565b634e487b7160e01b600052603260045260246000fd5b600060208284031215613eef57600080fd5b815160ff8116811461088157600080fd5b60ff82811682821603908111156107dc576107dc613e49565b600181815b80851115613f54578160001904821115613f3a57613f3a613e49565b80851615613f4757918102915b93841c9390800290613f1e565b509250929050565b600082613f6b575060016107dc565b81613f78575060006107dc565b8160018114613f8e5760028114613f9857613fb4565b60019150506107dc565b60ff841115613fa957613fa9613e49565b50506001821b6107dc565b5060208310610133831016604e8410600b8410161715613fd7575081810a6107dc565b613fe18383613f19565b8060001904821115613ff557613ff5613e49565b029392505050565b600061088160ff841683613f5c565b808201808211156107dc576107dc613e49565b634e487b7160e01b600052600160045260246000fd5b60006108818383613f5c565b60006020828403121561405357600080fd5b5051919050565b60006001820161406c5761406c613e49565b5060010190565b7f416363657373436f6e74726f6c3a206163636f756e74200000000000000000008152600083516140ab816017850160208801613992565b7001034b99036b4b9b9b4b733903937b6329607d1b60179184019182015283516140dc816028840160208801613992565b01602801949350505050565b6000816140f7576140f7613e49565b506000190190565b634e487b7160e01b600052603160045260246000fdfea2646970667358221220d12a1f4d42af54795ce676bfff63ec683becf1056457425218d0227374f3f31364736f6c634300081300337df1fa30796d39d0e882422146943ee011c6f6b410f211570cc3a712e3e51e6a6ff92aee9c9f4e39dc206872db9efdc37eacf3ea4e04ae77b7e68d993e2081fb00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000007861f80000000000000000000000000000000000000000000000000000000000000000d00000000000000000000000074a68215aedf59f317a23e87c13b848a292f27a4000000000000000000000000c63e3b6d0a2d382a74b13d19426b65c0aa5f36480000000000000000000000002c5c3374c216bd8c36d598c40d990eb2a2250ccd0000000000000000000000001ab7b945f50d33cf387fb74eb5f7a092ad03dc810000000000000000000000004353cac32924b45c01c2880f65e75b3795ddfd60000000000000000000000000f0f11d6d86346c541ba2ef2f48ad7a58255cd52b0000000000000000000000000f310c35c006a86bd0df6595b1856ce8ef06bbd3000000000000000000000000551b372ad7a7b85bab113b273fd4c7924dff4071000000000000000000000000c18dbf3ebe65146b60b70fefb686e621267fe8770000000000000000000000001e6ab3d65ad983202ebd92575aa5a168d0d6ebc9000000000000000000000000d8bf63ed3384f32d6cd5af9b72299aadb78729920000000000000000000000008dd3fb456f8d36191d94572802d7715a0665106b000000000000000000000000e2dc552ab6848c2126229554ab3411911c28547b
Deployed Bytecode
0x608060405234801561001057600080fd5b50600436106103275760003560e01c806370a08231116101b8578063a457c2d711610104578063d547741f116100a2578063e8eb22841161007c578063e8eb228414610762578063f2fde38b14610775578063f544c35e14610788578063fad1919a146107b157600080fd5b8063d547741f14610734578063dd62ed3e14610747578063e1c7392a1461075a57600080fd5b8063a98d03b2116100de578063a98d03b2146106c3578063b6483bab146106e7578063bb140470146106fa578063ca15c8731461072157600080fd5b8063a457c2d71461068a578063a57636b81461069d578063a9059cbb146106b057600080fd5b806386fe212d1161017157806391d148541161014b57806391d148541461065f57806395d89b41146106725780639af1d35a1461067a578063a217fddf1461068257600080fd5b806386fe212d146106145780638da5cb5b146106275780639010d07c1461064c57600080fd5b806370a0823114610595578063715018a6146105be57806375298734146105c65780637766912d146105db57806379cc6790146105ee5780637d91043f1461060157600080fd5b806326ca291b11610277578063363487bc11610230578063395093511161020a578063395093511461052e57806342966c681461054157806357a858fc146105545780636c9efc911461058257600080fd5b8063363487bc1461050057806336568abe1461050857806339444ffe1461051b57600080fd5b806326ca291b1461048357806326d71d88146104965780632c678c64146104bd5780632f2ff15d146104c5578063313ce567146104d8578063320974b2146104ed57600080fd5b80630c7fa13e116102e45780631a5d8b49116102be5780631a5d8b491461041257806321a606351461043a57806323b872dd1461044d578063248a9ca31461046057600080fd5b80630c7fa13e146103d957806318160ddd146103e3578063195e2ae4146103eb57600080fd5b806301ffc9a71461032c57806306fdde0314610354578063080e13011461036957806308560eca1461038a578063095ea7b31461039f5780630a99e88a146103b2575b600080fd5b61033f61033a366004613968565b6107d1565b60405190151581526020015b60405180910390f35b61035c6107e2565b60405161034b91906139b6565b61037c610377366004613aa5565b610874565b60405190815260200161034b565b610392610888565b60405161034b9190613aec565b61033f6103ad366004613b4e565b6108ff565b61037c7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb81565b6103e1610917565b005b60025461037c565b61037c7f3efceb6119340bd5a1c0a6530e52c792633ea9aaf37bc59a87c63d7af29fbbc981565b610425610420366004613b78565b61094c565b6040805192835260208301919091520161034b565b61033f610448366004613c27565b61098f565b61033f61045b366004613c40565b6109b2565b61037c61046e366004613c27565b60009081526005602052604090206001015490565b61037c610491366004613c27565b6109d6565b61037c7f6ff92aee9c9f4e39dc206872db9efdc37eacf3ea4e04ae77b7e68d993e2081fb81565b600b5461037c565b6103e16104d3366004613c7c565b610a34565b60125b60405160ff909116815260200161034b565b61037c6104fb366004613c27565b610a5e565b61037c610a71565b6103e1610516366004613c7c565b610a8e565b61037c610529366004613ca8565b610b11565b61033f61053c366004613b4e565b610cf6565b6103e161054f366004613c27565b610d18565b610567610562366004613c27565b610d22565b6040805193845260208401929092529082015260600161034b565b61037c610590366004613ca8565b610d55565b61037c6105a3366004613cca565b6001600160a01b031660009081526020819052604090205490565b6103e1610ef9565b6105ce610f0d565b60405161034b9190613ce5565b61037c6105e9366004613d1d565b610ff8565b6103e16105fc366004613b4e565b61100d565b6104db61060f366004613c27565b611022565b6103e1610622366004613c27565b611049565b600e546001600160a01b03165b6040516001600160a01b03909116815260200161034b565b61063461065a366004613ca8565b61107c565b61033f61066d366004613c7c565b611094565b61035c6110bf565b6105ce6110ce565b61037c600081565b61033f610698366004613b4e565b6110ef565b6103e16106ab366004613d74565b61116a565b61033f6106be366004613b4e565b61121b565b61033f6106d1366004613c27565b6000908152600f602052604090205460ff161590565b6103e16106f5366004613b78565b611229565b61037c7f7df1fa30796d39d0e882422146943ee011c6f6b410f211570cc3a712e3e51e6a81565b61037c61072f366004613c27565b6113a5565b6103e1610742366004613c7c565b6113bc565b61037c610755366004613da9565b6113e1565b6103e161140c565b61037c610770366004613c27565b611518565b6103e1610783366004613cca565b611547565b61037c610796366004613cca565b6001600160a01b031660009081526008602052604090205490565b61037c6107bf366004613c27565b60009081526011602052604090205490565b60006107dc826115bd565b92915050565b6060600380546107f190613dd3565b80601f016020809104026020016040519081016040528092919081815260200182805461081d90613dd3565b801561086a5780601f1061083f5761010080835404028352916020019161086a565b820191906000526020600020905b81548152906001019060200180831161084d57829003601f168201915b5050505050905090565b60006108813384846115c8565b9392505050565b6060600a80548060200260200160405190810160405280929190818152602001828054801561086a57602002820191906000526020600020906000905b825461010083900a900460ff1615158152602060019283018181049485019490930390920291018084116108c55790505050505050905090565b60003361090d8185856116ad565b5060019392505050565b7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb610941816117d1565b6109496117db565b50565b600080600085301860601b858560405160200161096b93929190613e0d565b60408051808303601f19018152919052805160209091012096948718955050505050565b6000610999610a71565b6000928352601060205260409092205491909111919050565b6000336109c0858285611839565b6109cb8585856118ad565b506001949350505050565b60125460009081036109eb576107dc82610a5e565b4260006109fb6104fb6001611518565b90506000610a0b60128484611a51565b9050610a176001611518565b610a218683613e5f565b610a2b9190613e8c565b95945050505050565b600082815260056020526040902060010154610a4f816117d1565b610a598383611aa4565b505050565b60006107dc82610a6c610f0d565b611ac6565b6000610a7f610e1042613ea0565b610a899042613eb4565b905090565b6001600160a01b0381163314610b035760405162461bcd60e51b815260206004820152602f60248201527f416363657373436f6e74726f6c3a2063616e206f6e6c792072656e6f756e636560448201526e103937b632b9903337b91039b2b63360891b60648201526084015b60405180910390fd5b610b0d8282611ae1565b5050565b600060078281548110610b2657610b26613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610b74573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610b989190613edd565b60ff16601210610c505760078281548110610bb557610bb5613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610c03573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c279190613edd565b60125b610c349190613f00565b610c3f90600a613ffd565b610c499084613e8c565b90506107dc565b601260078381548110610c6557610c65613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610cb3573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610cd79190613edd565b610ce19190613f00565b610cec90600a613ffd565b610c499084613e5f565b60003361090d818585610d0983836113e1565b610d13919061400c565b6116ad565b6109493382611b03565b60128181548110610d3257600080fd5b600091825260209091206003909102018054600182015460029092015490925083565b600060078281548110610d6a57610d6a613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610db8573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610ddc9190613edd565b60ff16601210610e725760078281548110610df957610df9613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610e47573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610e6b9190613edd565b6012610cd7565b601260078381548110610e8757610e87613ec7565b600091825260209182902001546040805163313ce56760e01b815290516001600160a01b039092169263313ce567926004808401938290030181865afa158015610ed5573d6000803e3d6000fd5b505050506040513d601f19601f82011682018060405250810190610c2a9190613edd565b610f01611c35565b610f0b6000611c8f565b565b60135460609015610f6d57601380548060200260200160405190810160405280929190818152602001828054801561086a57602002820191906000526020600020905b815481526020019060010190808311610f50575050505050905090565b60408051600480825260a0820190925260009160208201608080368337019050509050600281600181518110610fa557610fa5613ec7565b602002602001018181525050600181600281518110610fc657610fc6613ec7565b60200260200101818152505061010081600381518110610fe857610fe8613ec7565b6020908102919091010152919050565b60006110058484846115c8565b949350505050565b611018823383611839565b610b0d8282611b03565b6000811561104157600261103583611ce1565b6107dc911c603f613eb4565b506040919050565b7faa06a9d3e3ec1501dfa4c06793f24ccddc527fa3089263f11fd78652bb9bafdb611073816117d1565b610b0d82611d75565b60008281526006602052604081206108819083611db6565b60009182526005602090815260408084206001600160a01b0393909316845291905290205460ff1690565b6060600480546107f190613dd3565b6060610a896516750de3880066252176e4c529f9662386f26fc10000611dc2565b600033816110fd82866113e1565b90508381101561115d5760405162461bcd60e51b815260206004820152602560248201527f45524332303a2064656372656173656420616c6c6f77616e63652062656c6f77604482015264207a65726f60d81b6064820152608401610afa565b6109cb82868684036116ad565b7f3efceb6119340bd5a1c0a6530e52c792633ea9aaf37bc59a87c63d7af29fbbc9611194816117d1565b61119d82611e8b565b60006111b26111ac6001611518565b84611ac6565b905060006111c36104fb6001611518565b90506111d982826111d46001611518565b611f97565b60006111e560126120c1565b519050426111f3818361216b565b6111ff601282856121e5565b8551611212906013906020890190613908565b50505050505050565b60003361090d8185856118ad565b60005a90506112378361098f565b6112785760405162461bcd60e51b81526020600482015260126024820152710caf0e0d2e4cac840c4d8dec6d65ad0c2e6d60731b6044820152606401610afa565b60008061128686868661094c565b6000818152600f6020526040902054919350915060ff16156112e15760405162461bcd60e51b81526020600482015260146024820152730c8eae0d8d2c6c2e8ca40dcdedcc6ca5ad0c2e6d60631b6044820152606401610afa565b60006112ec83611022565b60ff169050600081116113345760405162461bcd60e51b815260206004820152601060248201526f0cadae0e8f240dcdedcc6ca5ad0c2e6d60831b6044820152606401610afa565b600061133f82611518565b6000848152600f60205260409020805460ff19166001179055905061137d61136f600e546001600160a01b031690565b611378836109d6565b61222a565b611387888261222a565b5050505061139f5a6113999083613eb4565b3a6122e9565b50505050565b60008181526006602052604081206107dc9061234b565b6000828152600560205260409020600101546113d7816117d1565b610a598383611ae1565b6001600160a01b03918216600090815260016020908152604080832093909416825291909152205490565b6000611416610a71565b9050600081116114285761142861401f565b60008181526011602052604081205490036114c657600061144a600143613eb4565b4090508061145a5761145a61401f565b42806114685761146861401f565b6000828152601060209081526040808320849055858352601182529182902084905581518481529081018390527f2c6c5a9e4f0ddd70b42bd7fcac74128409018755c234dc0d2d29c66eb6335c9a91015b60405180910390a1505050565b6000818152601160209081526040808320548084526010835292819020548151848152928301819052917f2c6c5a9e4f0ddd70b42bd7fcac74128409018755c234dc0d2d29c66eb6335c9a91016114b9565b60006115266012600a613ffd565b6001611533846002614035565b61153d9190613eb4565b6107dc9190613e5f565b61154f611c35565b6001600160a01b0381166115b45760405162461bcd60e51b815260206004820152602660248201527f4f776e61626c653a206e6577206f776e657220697320746865207a65726f206160448201526564647265737360d01b6064820152608401610afa565b61094981611c8f565b60006107dc82612355565b600080611678846007856000815181106115e4576115e4613ec7565b6020026020010151815481106115fc576115fc613ec7565b6000918252602090912001546040516370a0823160e01b81526001600160a01b038981166004830152909116906370a0823190602401602060405180830381865afa15801561164f573d6000803e3d6000fd5b505050506040513d601f19601f820116820180604052508101906116739190614041565b612395565b905060006116a186838660008151811061169457611694613ec7565b60200260200101516123ab565b9050610a2b868261222a565b6001600160a01b03831661170f5760405162461bcd60e51b8152602060048201526024808201527f45524332303a20617070726f76652066726f6d20746865207a65726f206164646044820152637265737360e01b6064820152608401610afa565b6001600160a01b0382166117705760405162461bcd60e51b815260206004820152602260248201527f45524332303a20617070726f766520746f20746865207a65726f206164647265604482015261737360f01b6064820152608401610afa565b6001600160a01b0383811660008181526001602090815260408083209487168084529482529182902085905590518481527f8c5be1e5ebec7d5bd14f71427d1e84f3dd0314c0f7b2291e5b200ac8c7c3b925910160405180910390a3505050565b6109498133612530565b60005b600a54811015610949576001600a82815481106117fd576117fd613ec7565b90600052602060002090602091828204019190066101000a81548160ff02191690831515021790555080806118319061405a565b9150506117de565b600061184584846113e1565b9050600019811461139f57818110156118a05760405162461bcd60e51b815260206004820152601d60248201527f45524332303a20696e73756666696369656e7420616c6c6f77616e63650000006044820152606401610afa565b61139f84848484036116ad565b6001600160a01b0383166119115760405162461bcd60e51b815260206004820152602560248201527f45524332303a207472616e736665722066726f6d20746865207a65726f206164604482015264647265737360d81b6064820152608401610afa565b6001600160a01b0382166119735760405162461bcd60e51b815260206004820152602360248201527f45524332303a207472616e7366657220746f20746865207a65726f206164647260448201526265737360e81b6064820152608401610afa565b6001600160a01b038316600090815260208190526040902054818110156119eb5760405162461bcd60e51b815260206004820152602660248201527f45524332303a207472616e7366657220616d6f756e7420657863656564732062604482015265616c616e636560d01b6064820152608401610afa565b6001600160a01b03848116600081815260208181526040808320878703905593871680835291849020805487019055925185815290927fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a361139f565b600080611a5f858585612589565b90506000611a6c866125a2565b8051909150851115611a97578051611a849086613eb4565b611a8e9083613e8c565b92505050610881565b6020015195945050505050565b611aae8282612602565b6000828152600660205260409020610a599082612688565b6040805160208101909152818152600090610881908461269d565b611aeb8282612738565b6000828152600660205260409020610a59908261279f565b6001600160a01b038216611b635760405162461bcd60e51b815260206004820152602160248201527f45524332303a206275726e2066726f6d20746865207a65726f206164647265736044820152607360f81b6064820152608401610afa565b6001600160a01b03821660009081526020819052604090205481811015611bd75760405162461bcd60e51b815260206004820152602260248201527f45524332303a206275726e20616d6f756e7420657863656564732062616c616e604482015261636560f01b6064820152608401610afa565b6001600160a01b0383166000818152602081815260408083208686039055600280548790039055518581529192917fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a3505050565b600e546001600160a01b03163314610f0b5760405162461bcd60e51b815260206004820181905260248201527f4f776e61626c653a2063616c6c6572206973206e6f7420746865206f776e65726044820152606401610afa565b600e80546001600160a01b038381166001600160a01b0319831681179093556040519116919082907f8be0079c531659141344cd1fd0a4f28419497f9722a3daafe3b4186f6b6457e090600090a35050565b600080608083901c15611cf657608092831c92015b604083901c15611d0857604092831c92015b602083901c15611d1a57602092831c92015b601083901c15611d2c57601092831c92015b600883901c15611d3e57600892831c92015b600483901c15611d5057600492831c92015b600283901c15611d6257600292831c92015b600183901c156107dc5760010192915050565b6001600a8281548110611d8a57611d8a613ec7565b90600052602060002090602091828204019190066101000a81548160ff02191690831515021790555050565b600061088183836127b4565b60408051600380825260808201909252606091600091906020820184803683375050600d5482519293509182915083906002908110611e0357611e03613ec7565b6020908102919091010152600c548251819084906001908110611e2857611e28613ec7565b60209081029190910101526000611e3f8284613e5f565b90508587611e4d8a8461400c565b611e579190613e5f565b611e619190613e8c565b84600081518110611e7457611e74613ec7565b602090810291909101015250919695505050505050565b8051600414611ed35760405162461bcd60e51b81526020600482015260146024820152730d2dcecc2d8d2c840c2e4e4c2f25cd8cadccee8d60631b6044820152606401610afa565b600081600181518110611ee857611ee8613ec7565b602002602001015111611f355760405162461bcd60e51b81526020600482015260156024820152740696e76616c69642061727261795b315d203d3d203605c1b6044820152606401610afa565b600081600281518110611f4a57611f4a613ec7565b6020026020010151116109495760405162461bcd60e51b81526020600482015260156024820152740696e76616c69642061727261795b325d203d3d203605c1b6044820152606401610afa565b81831015611ff957611faa836002613e5f565b821115611ff95760405162461bcd60e51b815260206004820152601960248201527f696e76616c6964206368616e67653a20746f6f20736d616c6c000000000000006044820152606401610afa565b81831180156120085750600082115b1561206357612018826002613e5f565b8311156120635760405162461bcd60e51b8152602060048201526019602482015278696e76616c6964206368616e67653a20746f6f206c6172676560381b6044820152606401610afa565b8183118015612070575081155b15610a595780831115610a595760405162461bcd60e51b8152602060048201526019602482015278696e76616c6964206368616e67653a20746f6f206c6172676560381b6044820152606401610afa565b6120e560405180606001604052806000815260200160008152602001600081525090565b815461210e576040518060600160405280600081526020016000815260200160008152506107dc565b8154829061211e90600190613eb4565b8154811061212e5761212e613ec7565b9060005260206000209060030201604051806060016040529081600082015481526020016001820154815260200160028201548152505092915050565b8015610b0d5780600c612183606463bc191380613e8c565b61218d9190613e8c565b612197919061400c565b8211610b0d5760405162461bcd60e51b815260206004820152601c60248201527f696e76616c6964206368616e67653a20746f6f206672657175656e74000000006044820152606401610afa565b826121f18484846127de565b81546001818101845560009384526020938490208351600390930201918255928201519281019290925560400151600290910155505050565b6001600160a01b0382166122805760405162461bcd60e51b815260206004820152601f60248201527f45524332303a206d696e7420746f20746865207a65726f2061646472657373006044820152606401610afa565b8060026000828254612292919061400c565b90915550506001600160a01b038216600081815260208181526040808320805486019055518481527fddf252ad1be2c89b69c2b068fc378daa952ba7f163c4a11628f55a4df523b3ef910160405180910390a35050565b600c5480156123135760046122ff82600f613e5f565b612309908561400c565b901c600c55612319565b600c8390555b600d54801561234357600461232f82600f613e5f565b612339908561400c565b901c600d5561139f565b5050600d5550565b60006107dc825490565b60006001600160e01b031982166336372b0760e01b148061238657506001600160e01b0319821663a219a02560e01b145b806107dc57506107dc82612918565b60008183106123a45781610881565b5090919050565b6000600a82815481106123c0576123c0613ec7565b90600052602060002090602091828204019190069054906101000a900460ff16156124205760405162461bcd60e51b815260206004820152601060248201526f1b5a59dc985d1a5bdb881cd9585b195960821b6044820152606401610afa565b60095442908111156124665760405162461bcd60e51b815260206004820152600f60248201526e191958591b1a5b99481c185cdcd959608a1b6044820152606401610afa565b6007838154811061247957612479613ec7565b60009182526020909120015460405163079cc67960e41b81526001600160a01b03878116600483015260248201879052909116906379cc679090604401600060405180830381600087803b1580156124d057600080fd5b505af11580156124e4573d6000803e3d6000fd5b5050505060008411806124f5575083155b6125015761250161401f565b600061250d8585610d55565b905080600b6000828254612521919061400c565b90915550909695505050505050565b61253a8282611094565b610b0d5761254781612923565b612552836020612935565b604051602001612563929190614073565b60408051601f198184030181529082905262461bcd60e51b8252610afa916004016139b6565b60006125968484846127de565b60400151949350505050565b6125c660405180606001604052806000815260200160008152602001600081525090565b81546125ef576040518060600160405280600081526020016000815260200160008152506107dc565b8160008154811061212e5761212e613ec7565b61260c8282611094565b610b0d5760008281526005602090815260408083206001600160a01b03851684529091529020805460ff191660011790556126443390565b6001600160a01b0316816001600160a01b0316837f2f8788117e7eff1d82e926ec794901d17c78024a50270940304540a733656f0d60405160405180910390a45050565b6000610881836001600160a01b038416612ad1565b6000806126e78385600001516002815181106126bb576126bb613ec7565b602002602001015186600001516001815181106126da576126da613ec7565b6020026020010151612b20565b9050611005846000015160008151811061270357612703613ec7565b602002602001015182612716919061400c565b85518051600390811061272b5761272b613ec7565b6020026020010151612c0a565b6127428282611094565b15610b0d5760008281526005602090815260408083206001600160a01b0385168085529252808320805460ff1916905551339285917ff6391f5c32d9c69d2a47ea670b442974b53935d1edc7fd64eb21e047a839171b9190a45050565b6000610881836001600160a01b038416612cf9565b60008260000182815481106127cb576127cb613ec7565b9060005260206000200154905092915050565b61280260405180606001604052806000815260200160008152602001600081525090565b8354156128f7578354600090859061281c90600190613eb4565b8154811061282c5761282c613ec7565b90600052602060002090600302016040518060600160405290816000820154815260200160018201548152602001600282015481525050905080600001518410156128a95760405162461bcd60e51b815260206004820152600d60248201526c0696e76616c6964207374616d7609c1b6044820152606401610afa565b80516000906128b89086613eb4565b6128c29085613e5f565b905060405180606001604052808681526020018581526020018284604001516128eb919061400c565b81525092505050610881565b50604080516060810182529283526020830191909152600090820152919050565b60006107dc82612dec565b60606107dc6001600160a01b03831660145b60606000612944836002613e5f565b61294f90600261400c565b67ffffffffffffffff811115612967576129676139e9565b6040519080825280601f01601f191660200182016040528015612991576020820181803683370190505b509050600360fc1b816000815181106129ac576129ac613ec7565b60200101906001600160f81b031916908160001a905350600f60fb1b816001815181106129db576129db613ec7565b60200101906001600160f81b031916908160001a90535060006129ff846002613e5f565b612a0a90600161400c565b90505b6001811115612a82576f181899199a1a9b1b9c1cb0b131b232b360811b85600f1660108110612a3e57612a3e613ec7565b1a60f81b828281518110612a5457612a54613ec7565b60200101906001600160f81b031916908160001a90535060049490941c93612a7b816140e8565b9050612a0d565b5083156108815760405162461bcd60e51b815260206004820181905260248201527f537472696e67733a20686578206c656e67746820696e73756666696369656e746044820152606401610afa565b6000818152600183016020526040812054612b18575081546001818101845560008481526020808220909301849055845484825282860190935260409020919091556107dc565b5060006107dc565b6000808060001985870985870292508281108382030391505080600003612b5a57838281612b5057612b50613e76565b0492505050610881565b808411612ba15760405162461bcd60e51b81526020600482015260156024820152744d6174683a206d756c446976206f766572666c6f7760581b6044820152606401610afa565b60008486880960026001871981018816978890046003810283188082028403028082028403028082028403028082028403028082028403029081029092039091026000889003889004909101858311909403939093029303949094049190911702949350505050565b60006080821015612c5d5760405162461bcd60e51b815260206004820152601b60248201527f696e76616c6964206578706f6e656e743a20746f6f20736d616c6c00000000006044820152606401610afa565b610200821115612caf5760405162461bcd60e51b815260206004820152601b60248201527f696e76616c6964206578706f6e656e743a20746f6f206c6172676500000000006044820152606401610afa565b6000612ce5612ccc612cc986670de0b6b3a7640000613e5f565b90565b612ce0612cc986660de0b6b3a76400613e5f565b612e11565b9050611005670de0b6b3a764000082613e8c565b60008181526001830160205260408120548015612de2576000612d1d600183613eb4565b8554909150600090612d3190600190613eb4565b9050818114612d96576000866000018281548110612d5157612d51613ec7565b9060005260206000200154905080876000018481548110612d7457612d74613ec7565b6000918252602080832090910192909255918252600188019052604090208390555b8554869080612da757612da76140ff565b6001900381819060005260206000200160009055905585600101600086815260200190815260200160002060009055600193505050506107dc565b60009150506107dc565b60006001600160e01b03198216635a05180f60e01b14806107dc57506107dc82612f23565b60008282818303612e3c578015612e29576000612e33565b670de0b6b3a76400005b925050506107dc565b670de0b6b3a76400008203612e5d57670de0b6b3a7640000925050506107dc565b80600003612e7757670de0b6b3a7640000925050506107dc565b670de0b6b3a76400008103612e905784925050506107dc565b670de0b6b3a7640000821115612ec157612eba612eb5612eaf87612f58565b8661308d565b61309c565b9250612f1b565b6000612edf612cc9846ec097ce7bc90715b34b9f1000000000613e8c565b90506000612ef8612eb5612ef284612f58565b8861308d565b9050612f16612cc9826ec097ce7bc90715b34b9f1000000000613e8c565b945050505b505092915050565b60006001600160e01b03198216637965db0b60e01b14806107dc57506301ffc9a760e01b6001600160e01b03198316146107dc565b600081670de0b6b3a7640000811015612f875760405163036d32ef60e41b815260048101849052602401610afa565b6000613013670de0b6b3a7640000830460016fffffffffffffffffffffffffffffffff821160071b91821c67ffffffffffffffff811160061b90811c63ffffffff811160051b90811c61ffff811160041b90811c60ff8111600390811b91821c600f811160021b90811c918211871b91821c969096119490961792909217171791909117919091171790565b9050670de0b6b3a7640000810282821c670de0b6b3a763ffff19810161303c5750949350505050565b671bc16d674ec800006706f05b59d3b200005b801561307f57670de0b6b3a7640000838002049250818310613077579283019260019290921c915b60011c61304f565b50825b979650505050505050565b6000610881612cc984846130f2565b600081680a688906bd8affffff8111156130cc5760405163b3b6ba1f60e01b815260048101849052602401610afa565b60006130e4670de0b6b3a7640000604084901b613e8c565b9050611005612cc9826131a8565b60008080600019848609848602925082811083820303915050806000036131265750670de0b6b3a7640000900490506107dc565b670de0b6b3a7640000811061315857604051635173648d60e01b81526004810186905260248101859052604401610afa565b6000670de0b6b3a764000085870962040000818503049310909103600160ee1b02919091177faccb18165bd6fe31ae1cf318dc5b51eee0e1ba569b88cd74c1773b91fac106690291505092915050565b600160bf1b67ff000000000000008216156132b5576780000000000000008216156131dc5768016a09e667f3bcc9090260401c5b6740000000000000008216156131fb576801306fe0a31b7152df0260401c5b67200000000000000082161561321a576801172b83c7d517adce0260401c5b6710000000000000008216156132395768010b5586cf9890f62a0260401c5b670800000000000000821615613258576801059b0d31585743ae0260401c5b67040000000000000082161561327757680102c9a3e778060ee70260401c5b6702000000000000008216156132965768010163da9fb33356d80260401c5b6701000000000000008216156132b557680100b1afa5abcbed610260401c5b66ff0000000000008216156133b45766800000000000008216156132e25768010058c86da1c09ea20260401c5b6640000000000000821615613300576801002c605e2e8cec500260401c5b662000000000000082161561331e57680100162f3904051fa10260401c5b661000000000000082161561333c576801000b175effdc76ba0260401c5b660800000000000082161561335a57680100058ba01fb9f96d0260401c5b66040000000000008216156133785768010002c5cc37da94920260401c5b6602000000000000821615613396576801000162e525ee05470260401c5b66010000000000008216156133b45768010000b17255775c040260401c5b65ff00000000008216156134aa57658000000000008216156133df576801000058b91b5bc9ae0260401c5b654000000000008216156133fc57680100002c5c89d5ec6d0260401c5b652000000000008216156134195768010000162e43f4f8310260401c5b6510000000000082161561343657680100000b1721bcfc9a0260401c5b650800000000008216156134535768010000058b90cf1e6e0260401c5b65040000000000821615613470576801000002c5c863b73f0260401c5b6502000000000082161561348d57680100000162e430e5a20260401c5b650100000000008216156134aa576801000000b1721835510260401c5b64ff00000000821615613597576480000000008216156134d357680100000058b90c0b490260401c5b6440000000008216156134ef5768010000002c5c8601cc0260401c5b64200000000082161561350b576801000000162e42fff00260401c5b6410000000008216156135275768010000000b17217fbb0260401c5b640800000000821615613543576801000000058b90bfce0260401c5b64040000000082161561355f57680100000002c5c85fe30260401c5b64020000000082161561357b5768010000000162e42ff10260401c5b64010000000082161561359757680100000000b17217f80260401c5b63ff00000082161561367b5763800000008216156135be5768010000000058b90bfc0260401c5b63400000008216156135d9576801000000002c5c85fe0260401c5b63200000008216156135f457680100000000162e42ff0260401c5b631000000082161561360f576801000000000b17217f0260401c5b630800000082161561362a57680100000000058b90c00260401c5b63040000008216156136455768010000000002c5c8600260401c5b6302000000821615613660576801000000000162e4300260401c5b630100000082161561367b5768010000000000b172180260401c5b62ff000082161561375657628000008216156136a0576801000000000058b90c0260401c5b624000008216156136ba57680100000000002c5c860260401c5b622000008216156136d45768010000000000162e430260401c5b621000008216156136ee57680100000000000b17210260401c5b620800008216156137085768010000000000058b910260401c5b62040000821615613722576801000000000002c5c80260401c5b6202000082161561373c57680100000000000162e40260401c5b62010000821615613756576801000000000000b1720260401c5b61ff008216156138285761800082161561377957680100000000000058b90260401c5b6140008216156137925768010000000000002c5d0260401c5b6120008216156137ab576801000000000000162e0260401c5b6110008216156137c45768010000000000000b170260401c5b6108008216156137dd576801000000000000058c0260401c5b6104008216156137f657680100000000000002c60260401c5b61020082161561380f57680100000000000001630260401c5b61010082161561382857680100000000000000b10260401c5b60ff8216156138f157608082161561384957680100000000000000590260401c5b6040821615613861576801000000000000002c0260401c5b602082161561387957680100000000000000160260401c5b6010821615613891576801000000000000000b0260401c5b60088216156138a957680100000000000000060260401c5b60048216156138c157680100000000000000030260401c5b60028216156138d957680100000000000000010260401c5b60018216156138f157680100000000000000010260401c5b670de0b6b3a76400000260409190911c60bf031c90565b828054828255906000526020600020908101928215613943579160200282015b82811115613943578251825591602001919060010190613928565b5061394f929150613953565b5090565b5b8082111561394f5760008155600101613954565b60006020828403121561397a57600080fd5b81356001600160e01b03198116811461088157600080fd5b60005b838110156139ad578181015183820152602001613995565b50506000910152565b60208152600082518060208401526139d5816040850160208701613992565b601f01601f19169190910160400192915050565b634e487b7160e01b600052604160045260246000fd5b604051601f8201601f1916810167ffffffffffffffff81118282101715613a2857613a286139e9565b604052919050565b600082601f830112613a4157600080fd5b8135602067ffffffffffffffff821115613a5d57613a5d6139e9565b8160051b613a6c8282016139ff565b9283528481018201928281019087851115613a8657600080fd5b83870192505b8483101561308257823582529183019190830190613a8c565b60008060408385031215613ab857600080fd5b82359150602083013567ffffffffffffffff811115613ad657600080fd5b613ae285828601613a30565b9150509250929050565b6020808252825182820181905260009190848201906040850190845b81811015613b26578351151583529284019291840191600101613b08565b50909695505050505050565b80356001600160a01b0381168114613b4957600080fd5b919050565b60008060408385031215613b6157600080fd5b613b6a83613b32565b946020939093013593505050565b600080600060608486031215613b8d57600080fd5b613b9684613b32565b92506020808501359250604085013567ffffffffffffffff80821115613bbb57600080fd5b818701915087601f830112613bcf57600080fd5b813581811115613be157613be16139e9565b613bf3601f8201601f191685016139ff565b91508082528884828501011115613c0957600080fd5b80848401858401376000848284010152508093505050509250925092565b600060208284031215613c3957600080fd5b5035919050565b600080600060608486031215613c5557600080fd5b613c5e84613b32565b9250613c6c60208501613b32565b9150604084013590509250925092565b60008060408385031215613c8f57600080fd5b82359150613c9f60208401613b32565b90509250929050565b60008060408385031215613cbb57600080fd5b50508035926020909101359150565b600060208284031215613cdc57600080fd5b61088182613b32565b6020808252825182820181905260009190848201906040850190845b81811015613b2657835183529284019291840191600101613d01565b600080600060608486031215613d3257600080fd5b613d3b84613b32565b925060208401359150604084013567ffffffffffffffff811115613d5e57600080fd5b613d6a86828701613a30565b9150509250925092565b600060208284031215613d8657600080fd5b813567ffffffffffffffff811115613d9d57600080fd5b61100584828501613a30565b60008060408385031215613dbc57600080fd5b613dc583613b32565b9150613c9f60208401613b32565b600181811c90821680613de757607f821691505b602082108103613e0757634e487b7160e01b600052602260045260246000fd5b50919050565b6bffffffffffffffffffffffff198416815282601482015260008251613e3a816034850160208701613992565b91909101603401949350505050565b634e487b7160e01b600052601160045260246000fd5b80820281158282048414176107dc576107dc613e49565b634e487b7160e01b600052601260045260246000fd5b600082613e9b57613e9b613e76565b500490565b600082613eaf57613eaf613e76565b500690565b818103818111156107dc576107dc613e49565b634e487b7160e01b600052603260045260246000fd5b600060208284031215613eef57600080fd5b815160ff8116811461088157600080fd5b60ff82811682821603908111156107dc576107dc613e49565b600181815b80851115613f54578160001904821115613f3a57613f3a613e49565b80851615613f4757918102915b93841c9390800290613f1e565b509250929050565b600082613f6b575060016107dc565b81613f78575060006107dc565b8160018114613f8e5760028114613f9857613fb4565b60019150506107dc565b60ff841115613fa957613fa9613e49565b50506001821b6107dc565b5060208310610133831016604e8410600b8410161715613fd7575081810a6107dc565b613fe18383613f19565b8060001904821115613ff557613ff5613e49565b029392505050565b600061088160ff841683613f5c565b808201808211156107dc576107dc613e49565b634e487b7160e01b600052600160045260246000fd5b60006108818383613f5c565b60006020828403121561405357600080fd5b5051919050565b60006001820161406c5761406c613e49565b5060010190565b7f416363657373436f6e74726f6c3a206163636f756e74200000000000000000008152600083516140ab816017850160208801613992565b7001034b99036b4b9b9b4b733903937b6329607d1b60179184019182015283516140dc816028840160208801613992565b01602801949350505050565b6000816140f7576140f7613e49565b506000190190565b634e487b7160e01b600052603160045260246000fdfea2646970667358221220d12a1f4d42af54795ce676bfff63ec683becf1056457425218d0227374f3f31364736f6c63430008130033
Constructor Arguments (ABI-Encoded and is the last bytes of the Contract Creation Code above)
00000000000000000000000000000000000000000000000000000000000000400000000000000000000000000000000000000000000000000000000007861f80000000000000000000000000000000000000000000000000000000000000000d00000000000000000000000074a68215aedf59f317a23e87c13b848a292f27a4000000000000000000000000c63e3b6d0a2d382a74b13d19426b65c0aa5f36480000000000000000000000002c5c3374c216bd8c36d598c40d990eb2a2250ccd0000000000000000000000001ab7b945f50d33cf387fb74eb5f7a092ad03dc810000000000000000000000004353cac32924b45c01c2880f65e75b3795ddfd60000000000000000000000000f0f11d6d86346c541ba2ef2f48ad7a58255cd52b0000000000000000000000000f310c35c006a86bd0df6595b1856ce8ef06bbd3000000000000000000000000551b372ad7a7b85bab113b273fd4c7924dff4071000000000000000000000000c18dbf3ebe65146b60b70fefb686e621267fe8770000000000000000000000001e6ab3d65ad983202ebd92575aa5a168d0d6ebc9000000000000000000000000d8bf63ed3384f32d6cd5af9b72299aadb78729920000000000000000000000008dd3fb456f8d36191d94572802d7715a0665106b000000000000000000000000e2dc552ab6848c2126229554ab3411911c28547b
-----Decoded View---------------
Arg [0] : moeBase (address[]): 0x74A68215AEdf59f317a23E87C13B848a292F27A4,0xc63e3B6D0a2d382A74B13D19426b65C0aa5F3648,0x2c5C3374c216BD8C36d598C40d990Eb2a2250cCD,0x1Ab7b945f50D33cF387Fb74eB5f7a092aD03dc81,0x4353CaC32924b45C01c2880F65E75B3795DDFd60,0xF0F11D6d86346C541bA2eF2f48ad7A58255Cd52B,0x0f310C35C006a86BD0Df6595B1856ce8Ef06Bbd3,0x551b372ad7A7b85BaB113B273fd4c7924dfF4071,0xC18dBF3Ebe65146B60b70fEfb686E621267Fe877,0x1e6AB3d65Ad983202ebD92575aA5a168D0D6EBC9,0xd8bF63eD3384f32d6CD5Af9B72299AadB7872992,0x8dd3fB456f8d36191D94572802D7715a0665106B,0xe2Dc552ab6848C2126229554ab3411911C28547b
Arg [1] : deadlineIn (uint256): 126230400
-----Encoded View---------------
16 Constructor Arguments found :
Arg [0] : 0000000000000000000000000000000000000000000000000000000000000040
Arg [1] : 0000000000000000000000000000000000000000000000000000000007861f80
Arg [2] : 000000000000000000000000000000000000000000000000000000000000000d
Arg [3] : 00000000000000000000000074a68215aedf59f317a23e87c13b848a292f27a4
Arg [4] : 000000000000000000000000c63e3b6d0a2d382a74b13d19426b65c0aa5f3648
Arg [5] : 0000000000000000000000002c5c3374c216bd8c36d598c40d990eb2a2250ccd
Arg [6] : 0000000000000000000000001ab7b945f50d33cf387fb74eb5f7a092ad03dc81
Arg [7] : 0000000000000000000000004353cac32924b45c01c2880f65e75b3795ddfd60
Arg [8] : 000000000000000000000000f0f11d6d86346c541ba2ef2f48ad7a58255cd52b
Arg [9] : 0000000000000000000000000f310c35c006a86bd0df6595b1856ce8ef06bbd3
Arg [10] : 000000000000000000000000551b372ad7a7b85bab113b273fd4c7924dff4071
Arg [11] : 000000000000000000000000c18dbf3ebe65146b60b70fefb686e621267fe877
Arg [12] : 0000000000000000000000001e6ab3d65ad983202ebd92575aa5a168d0d6ebc9
Arg [13] : 000000000000000000000000d8bf63ed3384f32d6cd5af9b72299aadb7872992
Arg [14] : 0000000000000000000000008dd3fb456f8d36191d94572802d7715a0665106b
Arg [15] : 000000000000000000000000e2dc552ab6848c2126229554ab3411911c28547b
Loading...
Loading
Loading...
Loading
Loading...
Loading
Loading...
Loading
[ Download: CSV Export ]
A contract address hosts a smart contract, which is a set of code stored on the blockchain that runs when predetermined conditions are met. Learn more about addresses in our Knowledge Base.