ERC-20
Overview
Max Total Supply
420,690,000,000,000 PEPE
Holders
175
Market
Price
$0.00 @ 0.000000 AVAX
Onchain Market Cap
$0.00
Circulating Supply Market Cap
-
Other Info
Token Contract (WITH 18 Decimals)
Balance
83,829,537,532,380.7777973947100549 PEPEValue
$0.00Loading...
Loading
Loading...
Loading
Loading...
Loading
Minimal Proxy Contract for 0x52d370e60c8220497da6abff36bb2587a31203b6
Contract Name:
BurstToken
Compiler Version
v0.8.20+commit.a1b79de6
Optimization Enabled:
Yes with 125 runs
Other Settings:
paris EvmVersion
Contract Source Code (Solidity Standard Json-Input format)
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import "../BIFKN314.sol"; /** * @title BurstToken * @dev This contract extends the BIFKN314 contract to implement a token with a bonding curve mechanism. * It includes functionalities to manage the bonding curve phase and restrict certain operations during this phase. * * Key functionalities include: * - Initializing the Burst Factory address. * - Marking the bonding curve as complete. * - Overriding the `_update` function to include bonding curve restrictions. * * The contract uses the following custom errors for better error handling: * - `StillBonding`: Indicates that an operation cannot be performed because the bonding period is still active. * - `Unauthorized`: Indicates that the caller is not authorized to perform the operation. * - `InvalidAddress`: Indicates that an invalid address was provided. * - `AlreadyInitialized`: Indicates that the Burst Factory address has already been initialized. */ contract BurstToken is BIFKN314 { // Address of Burst Factory address public burstFactory; // Bonding Curve Complete bool public curveComplete; modifier onlyBurstFactory() { if (msg.sender != burstFactory) revert Unauthorized(msg.sender); _; } /** * @dev Error to indicate that an operation cannot be performed because the bonding period is still active. */ error StillBonding(); /** * @dev Constructor function for the BurstToken contract. * It initializes the contract by calling the constructor of the BIFKN314 contract. */ constructor() BIFKN314() {} /** * @dev Initializes the Burst Token. * @param burstFactory_ The new address of the Burst Factory. * @notice Only the contract owner can call this function. * @notice Reverts if the provided address is invalid (address(0)). */ function initializeBurstToken(address burstFactory_) external onlyOwner { if (burstFactory_ == address(0)) revert InvalidAddress(); if (burstFactory != address(0)) revert AlreadyInitialized(); burstFactory = burstFactory_; } /** * @notice Marks the curve as complete. * @dev This function can only be called by the BurstFactory contract. * @dev Sets the `curveComplete` state variable to true. * @dev External function. */ function completeTheCurve() external onlyBurstFactory { curveComplete = true; } /** * @dev Internal function to update token transfers. * Overrides the `_update` function from the parent contract. * * This function performs the following actions: * 1. Calls the parent contract's `_update` function to handle the basic transfer logic. * 2. Checks if the bonding curve phase is still active (`curveComplete` is false). * 3. If the bonding curve phase is active, it ensures that the transfer is not between certain restricted addresses. * * @param from The address from which tokens are being transferred. * @param to The address to which tokens are being transferred. * @param amount The amount of tokens being transferred. * * @notice Reverts with `StillBonding` if the bonding curve phase is active and the transfer involves restricted addresses. */ function _update( address from, address to, uint256 amount ) internal virtual override { // Is still in bonding curve phase if (!curveComplete) { if ( from != burstFactory && from != address(0) && to != burstFactory && to != DEAD_ADDRESS && to != address(0) ) revert StillBonding(); } super._update(from, to, amount); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import "./BIFKNERC20.sol"; import "./BIFKN314LP.sol"; import "./PreventAutoSwap.sol"; import "./interfaces/IBIFKN314Factory.sol"; import "./interfaces/IBIFKN314CALLEE.sol"; import "./interfaces/IERC314Errors.sol"; import "./interfaces/IERC314Events.sol"; import "@openzeppelin/contracts/utils/ReentrancyGuard.sol"; import "@openzeppelin/contracts/utils/math/Math.sol"; /** * @title BIFKN314 * @dev This is a contract that implements the core functionality of the BIFKN314 token. * The contract is used to create a token that can be used for liquidity provision and swapping. * It follows the Automated Market Maker (AMM) model using the constant product formula. * The contract allows users to add and remove liquidity, swap tokens, and perform flash swaps. * The contract also accrues fees and distributes them to the feeTo address. * The contract is initialized with a supply cap. * The contract also maintains a reference to the BIFKN314LP contract for LP token management. * The contract allows for a factory address of address(0) to be set, which will disable fee distribution. * The contract owner can set the trading fee rate, maximum wallet percentage, and metadata URI. * The contract owner can also enable trading, set the fee collector address, and claim accrued trading fees. */ contract BIFKN314 is BIFKNERC20, ReentrancyGuard, PreventAutoSwap, IERC314Errors, IERC314Events { using Math for uint256; /** * @dev Represents the address constant for the dead address. * The dead address is a predefined address with all zeros, used to represent * an address that is no longer in use or has been destroyed. */ address public constant DEAD_ADDRESS = 0x000000000000000000000000000000000000dEaD; /** * @dev The minimum liquidity required for a transaction. */ uint256 public constant MINIMUM_LIQUIDITY = 10 ** 3; /** * @dev The `FLASHSWAP_FEE_RATE` constant represents the fee rate for flash swaps. * It is set to 30, which corresponds to a fee rate of 0.3%. */ uint256 public constant FLASHSWAP_FEE_RATE = 30; // 0.3% fee /** * @dev The base swap rate for the contract. * It represents a 0.3% fee for each swap. */ uint256 public constant BASE_SWAP_RATE = 30; // 0.3% fee /** * @dev The SCALE_FACTOR constant represents the scaling factor used in the contract. * It is set to 10000. */ uint256 public constant SCALE_FACTOR = 10000; /** * @dev The MAX_FEE_RATE constant represents the maximum fee rate that can be set. * It is set to 500, which corresponds to a fee rate of 5%. */ uint256 public constant MAX_FEE_RATE = 500; // 5% fee /** * @dev Represents the metadata URI for the contract. */ string public metadataURI; /** * @dev Represents the LP token contract for the BIFKN314 contract. */ BIFKN314LP public liquidityToken; /** * @dev A public boolean variable that indicates whether the contract is initialized or not. */ bool public isInitialized; /** * @dev A boolean variable indicating whether trading is enabled or not. * Once trading is enabled, it cannot be disabled. * Trading must be enabled before users can swap tokens. * Trading can only be enabled by the contract owner. * Trading is disabled by default. */ bool public tradingEnabled; /** * @dev A mapping that stores whether an address is exempt from the maximum wallet limit. */ mapping(address => bool) public isMaxWalletExempt; /** * @dev Represents the last cumulative price of the native asset. */ uint256 public price0CumulativeLast; /** * @dev Represents the last cumulative price of the token. */ uint256 public price1CumulativeLast; /** * @dev Represents the timestamp of the last block for enabling twap */ uint32 public blockTimestampLast; /** * @dev The address of the factory contract. */ IBIFKN314Factory public factory; /** * @dev The maximum percentage of the total supply that a wallet can hold. * For example, a value of 100 represents 1% of the total supply. */ uint256 public maxWalletPercent; /** * @dev A boolean variable that indicates whether the maximum wallet limit is enabled or not. */ bool public maxWalletEnabled; /** * @dev Public variable to store the accrued native fees. */ uint256 public accruedNativeFactoryFees; /** * @dev Public variable to store the amount of accrued token fees. */ uint256 public accruedTokenFactoryFees; /** * @dev The tradingFeeRate variable represents the rate at which trading fees are charged. * It is a public variable, meaning it can be accessed and modified by other contracts and external accounts. * The value of tradingFeeRate is a uint256, which represents a non-negative integer. * If the value of tradingFeeRate is 0, no trading fees are charged. * 15 represents a trading fee of 0.15%. * 100 represents a trading fee of 1%. * If the value of tradingFeeRate is 500, a trading fee of 5% is charged. */ uint256 public tradingFeeRate; /** * @dev Public variable to store the accrued trading fees. */ uint256 public accruedNativeTradingFees; /** * @dev Public variable to store the accrued token trading fees. */ uint256 public accruedTokenTradingFees; /** * @dev The address of the fee collector. */ address public feeCollector; /** * @dev The address of the contract owner. */ address public owner; /** * @dev Modifier that allows only the contract owner to execute the function. * Throws an error if the caller is not the owner. */ modifier onlyOwner() { if (_msgSender() != owner) revert Unauthorized(_msgSender()); _; } /** * @dev Modifier that allows only the fee collector to execute the function. * Throws an error if the caller is not the fee collector. */ modifier onlyFeeCollector() { if (_msgSender() != feeCollector) revert Unauthorized(_msgSender()); _; } /** * @dev Modifier to ensure that a transaction is executed before the specified deadline. * @param deadline The deadline timestamp after which the transaction is considered expired. * @notice This modifier reverts the transaction if the current block timestamp is greater than or equal to the deadline. */ modifier ensureDeadline(uint deadline) { if (block.timestamp >= deadline) revert TransactionExpired(); _; } /** * @dev Constructor function for the BIFKN314 contract. * It initializes the contract by calling the constructor of the BIFKNERC20 contract. * If the message sender is a contract, it sets the factory address to the message sender. * If the message sender is not a contract, it sets the factory address to address(0). * Finally, it transfers the ownership of the contract to the message sender. */ constructor() BIFKNERC20() { address sender = _msgSender(); _transferOwnership(sender); } /** * @dev Initializes the factory contract with a new owner. * @param newOwner The address of the new owner. * @notice This function can only be called once to initialize the factory contract. * @notice Once initialized, the ownership of the contract will be transferred to the factory contract. * @notice If the factory contract has already been initialized, calling this function will revert. */ function initializeFactory(address newOwner) external virtual { // Check if the factory contract has already been initialized // if the address of the factory contract is not the zero address, revert if (address(factory) != address(0)) revert AlreadyInitialized(); factory = IBIFKN314Factory(newOwner); _transferOwnership(address(factory)); } /** * @dev Initializes the contract with the given name and symbol. * Only the contract owner can call this function. * * @param tokenName The name of the contract. * @param tokenSymbol The symbol of the contract. */ function initialize( string memory tokenName, string memory tokenSymbol ) public override onlyOwner { super.initialize(tokenName, tokenSymbol); liquidityToken = new BIFKN314LP(); liquidityToken.initialize( string(abi.encodePacked(tokenName, " LP Token")), string("BLP") ); } /** * @dev Sets the total supply and mints tokens to the specified owner. * @param totalSupply_ The total supply of tokens to be minted. * @param owner_ The address of the owner to receive the minted tokens. * @param feeRate_ The trading fee rate to be set. * @param maxWalletPercent_ The maximum wallet percentage to be set. * @param metadataURI_ The metadata URI to be set. * @notice Only the contract owner can call this function. * @notice The total supply must be greater than zero. * @notice The total supply must not have been already minted. * @notice The owner address must not be the zero address. */ function setSupplyAndMint( uint256 totalSupply_, address owner_, uint256 feeRate_, uint256 maxWalletPercent_, string memory metadataURI_ ) public onlyOwner { if (totalSupply_ == 0) { revert AmountMustBeGreaterThanZero(); } if (totalSupply() > 0) { revert SupplyAlreadyMinted(); } if (owner_ == address(0)) { revert InvalidOwner(); } if (maxWalletPercent_ > 0) { maxWalletEnabled = true; setMaxWalletPercent(maxWalletPercent_); } metadataURI = metadataURI_; setTradingFeeRate(feeRate_); _transferOwnership(owner_); feeCollector = owner_; super._mint(owner_, totalSupply_); } /** * @dev Transfers tokens from the sender to the recipient. * Overrides the transfer function from the inherited contract. * If the recipient is this contract and autoSwap is not prevented, * then it automatically swaps tokens to native currency. * Otherwise, calls the transfer function from the inherited contract. * @param recipient The address receiving the tokens. * @param amount The amount of tokens to transfer. * @return success A boolean indicating the success of the transfer. */ function transfer( address recipient, uint256 amount ) public override returns (bool success) { if (_checkAndPerformAutoSwap(recipient, amount)) { success = true; } else { _checkMaxWallet(recipient, amount); success = super.transfer(recipient, amount); } } /** * @dev Transfers tokens from one address to another using an allowance. * Overrides the transferFrom function from the inherited contract. * Includes a max wallet check to ensure the recipient's balance does not exceed the limit. * @param sender The address sending the tokens. * @param recipient The address receiving the tokens. * @param amount The amount of tokens to transfer. * @return success A boolean indicating the success of the transfer. */ function transferFrom( address sender, address recipient, uint256 amount ) public override returns (bool success) { if (_checkAndPerformAutoSwap(recipient, amount)) { success = true; } else { _checkMaxWallet(recipient, amount); success = super.transferFrom(sender, recipient, amount); } } /** * @dev Internal function to transfer tokens from one address to another. * Overrides the internal transfer function from the inherited contract. * Calls the transfer function from the inherited contract. * This function is specifically used when transferring tokens to the contract * for the purpose of adding liquidity, swapping, or flash swapping. * @param from The address to transfer tokens from. * @param to The address to transfer tokens to. * @param value The amount of tokens to transfer. */ function _internalTransfer( address from, address to, uint256 value ) internal { super._transfer(from, to, value); } /** * @dev Internal function to be called before any transfer of tokens. * Checks to see if an autoswap condition is true, if so it swaps tokens * @param to The address receiving the tokens. * @param amount The amount of tokens to transfer. * @return swapped A boolean indicating whether the tokens were swapped. */ function _checkAndPerformAutoSwap( address to, uint256 amount ) internal returns (bool swapped) { if (to == address(this) && !_autoSwapIsPrevented()) { swapTokenToNative( amount, _calculateAutoSwapSlippage(amount, false), block.timestamp + 3 minutes ); swapped = true; } } /** * @dev Adds liquidity to the contract by depositing tokens and native currency. * @param amountToken_ The amount of tokens to be deposited. * @param recipient The address of the recipient of the liquidity tokens. * @param deadline The deadline in unix time from the current timestamp for the transaction to occur. * @return liquidity The amount of liquidity tokens minted. */ function addLiquidity( uint256 amountToken_, address recipient, uint256 deadline ) public payable nonReentrant ensureDeadline(deadline) returns (uint256 liquidity) { address sender = _msgSender(); if (amountToken_ == 0 || msg.value == 0) { revert AmountMustBeGreaterThanZero(); } // get reserves (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); // the native reserve is the balance of the contract minus the value sent nativeReserve = nativeReserve - msg.value; uint256 lpTotalSupply = liquidityToken.totalSupply(); uint256 amountNative = msg.value; uint256 amountToken = amountToken_; if (lpTotalSupply == 0) { uint256 _amountProduct = Math.sqrt(amountNative * amountToken); liquidity = _amountProduct - MINIMUM_LIQUIDITY; // Set owner of the first MINIMUM_LIQUIDITY tokens to the zero address liquidityToken.mint(DEAD_ADDRESS, MINIMUM_LIQUIDITY); // Liquidity is initialized isInitialized = true; } else { if (nativeReserve == 0 || tokenReserve == 0) revert InvalidReserves(); // Determine the amount of token required to add liquidity // according to the native amount sent amountToken = (amountNative * tokenReserve) / nativeReserve; uint256 currentKValue = _calculateKValue( nativeReserve, tokenReserve ); if (amountToken_ < amountToken) { revert AmountOfTokensLessThanMinimumRequired( amountToken_, amountToken ); } /** * @dev Calculates the liquidity amount based on the given amounts of native currency and token. * The liquidity amount is determined by taking the minimum of two calculations: * 1. (amountNative * lpTotalSupply) / _nativeReserve * 2. (amountToken * lpTotalSupply) / _tokenReserve */ liquidity = Math.min( (amountNative * lpTotalSupply) / nativeReserve, (amountToken * lpTotalSupply) / tokenReserve ); /** * @dev Updates the reserves and checks the liquidity ratio. * The new k value is calculated by multiplying the new token reserve by the new native reserve. * If the new k value is less than the current k value, the transaction is reverted. */ uint256 newNativeReserve = nativeReserve + amountNative; uint256 newTokenReserve = tokenReserve + amountToken; uint256 newKValue = newTokenReserve * newNativeReserve; if (newKValue < currentKValue) { revert DecreasesK(); } } // check if liquidity is greater than 0 if (liquidity == 0) { revert InsufficientLiquidityMinted(); } // mint liquidity tokens to the liquidity provider liquidityToken.mint(recipient, liquidity); // Only transfer the necessary amount of tokens _internalTransfer(sender, address(this), amountToken); _updatePrices(); emit AddLiquidity(sender, recipient, liquidity, msg.value, amountToken); } /** * @dev Removes liquidity from the contract by transferring native currency and tokens back to the liquidity provider. * @param amount The amount of liquidity to be removed. * @param recipient The address of the recipient of the native currency and tokens. * @param deadline The deadline in unix time from the current timestamp for the transaction to occur. * @return nativeAmount The amount of native currency received. * @return tokenAmount The amount of tokens received. * @notice The liquidity provider must have sufficient liquidity balance. */ function removeLiquidity( uint256 amount, address recipient, uint256 deadline ) public nonReentrant ensureDeadline(deadline) returns (uint256 nativeAmount, uint256 tokenAmount) { address sender = _msgSender(); if (!isInitialized) { revert ContractIsNotInitialized(); } uint256 lpTokenBalance = liquidityToken.balanceOf(sender); if (lpTokenBalance == 0) { revert YouHaveNoLiquidity(); } if (amount > lpTokenBalance) { revert InsufficientLiquidity(); } (nativeAmount, tokenAmount) = getAmountsForLP(amount); liquidityToken.burnFrom(sender, amount); _transferNative(recipient, nativeAmount); super._transfer(address(this), recipient, tokenAmount); emit RemoveLiquidity( sender, recipient, amount, nativeAmount, tokenAmount ); _updatePrices(); } /** * @dev Swaps native currency to tokens. * @param minimumTokensOut The minimum amount of tokens to receive in the swap. * @param deadline The deadline in unix time from current timestamp for the swap to occur. */ function swapNativeToToken( uint256 minimumTokensOut, uint256 deadline ) public payable nonReentrant ensureDeadline(deadline) returns (uint256[] memory amounts) { (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); uint256 nativeIn = msg.value; address sender = _msgSender(); nativeReserve = nativeReserve - nativeIn; (uint256 tokensBought, uint256 factoryFee, uint256 tradingFee) = _swap( nativeIn, minimumTokensOut, nativeReserve, tokenReserve ); accruedNativeTradingFees += tradingFee; _handleFactoryFees(factoryFee, true); _checkMaxWallet(sender, tokensBought); super._transfer(address(this), sender, tokensBought); _updatePrices(); amounts = new uint256[](2); amounts[0] = nativeIn; amounts[1] = tokensBought; emit Swap(sender, 0, nativeIn, tokensBought, 0, false); } /** * @dev Swaps a specified amount of tokens for native currency. * @param tokensSold The amount of tokens to be sold. * @param minimumNativeOut The minimum amount of native currency expected to be received. * @param deadline The deadline in unix time from current timestamp for the swap to occur. */ function swapTokenToNative( uint256 tokensSold, uint256 minimumNativeOut, uint256 deadline ) public nonReentrant ensureDeadline(deadline) returns (uint256[] memory amounts) { (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); address sender = _msgSender(); (uint256 nativeBought, uint256 factoryFee, uint256 tradingFee) = _swap( tokensSold, minimumNativeOut, tokenReserve, nativeReserve ); accruedTokenTradingFees += tradingFee; _handleFactoryFees(factoryFee, false); _internalTransfer(sender, address(this), tokensSold); _transferNative(sender, nativeBought); _updatePrices(); amounts = new uint256[](2); amounts[0] = tokensSold; amounts[1] = nativeBought; emit Swap(sender, tokensSold, 0, 0, nativeBought, false); } /** * @dev Executes a flash swap transaction. * @param recipient The address of the recipient of the flash swap. * @param amountNativeOut The amount of native currency to be sent to the recipient. * @param amountTokenOut The amount of tokens to be sent to the recipient. * @param data Additional data to be passed to the recipient. */ function flashSwap( address recipient, uint256 amountNativeOut, uint256 amountTokenOut, bytes calldata data ) external nonReentrant preventAutoSwap { if (!isInitialized) revert ContractIsNotInitialized(); if (!tradingEnabled) revert SwapNotEnabled(); if (amountNativeOut == 0 && amountTokenOut == 0) revert AmountMustBeGreaterThanZero(); if (recipient == address(0) || recipient == address(this)) revert InvalidRecipient(); (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); if (amountNativeOut > nativeReserve || amountTokenOut > tokenReserve) revert InsufficientLiquidity(); address sender = _msgSender(); if (amountNativeOut > 0) { // Sending native currency _transferNative(recipient, amountNativeOut); } if (amountTokenOut > 0) { // Sending token _checkMaxWallet(recipient, amountTokenOut); super._transfer(address(this), recipient, amountTokenOut); } IBIFKN314CALLEE(recipient).BIFKN314CALL( sender, amountNativeOut, amountTokenOut, data ); (uint256 nativeReserveAfter, uint256 tokenReserveAfter) = getReserves(); uint amountNativeIn = nativeReserveAfter > nativeReserve ? nativeReserveAfter - nativeReserve : 0; uint amountTokenIn = tokenReserveAfter > tokenReserve ? tokenReserveAfter - tokenReserve : 0; if (amountNativeIn == 0 && amountTokenIn == 0) { revert TokenRepaymentFailed(); } { uint256 totalFees = FLASHSWAP_FEE_RATE + tradingFeeRate; uint256 nativeReserveAdjusted = (nativeReserveAfter * SCALE_FACTOR) - (amountNativeIn * totalFees); uint256 tokenReserveAdjusted = (tokenReserveAfter * SCALE_FACTOR) - (amountTokenIn * totalFees); if ( nativeReserveAdjusted * tokenReserveAdjusted < nativeReserve * tokenReserve * (SCALE_FACTOR ** 2) ) { revert DecreasesK(); } } accruedNativeTradingFees += _calculateTradingFee(amountNativeIn); accruedTokenTradingFees += _calculateTradingFee(amountTokenIn); _handleFactoryFees(_calculateFactoryFee(amountNativeIn), true); _handleFactoryFees(_calculateFactoryFee(amountTokenIn), false); _updatePrices(); emit Swap( sender, amountTokenIn, amountNativeIn, amountTokenOut, amountNativeOut, true ); } /** * @dev Calculates the amount of output tokens based on the input amount and reserves. * This accounts for all fees including the factory fee, trading fee, and base swap rate. * @param inputAmount The amount of input tokens. * @param inputReserve The amount of input tokens in the reserve. * @param outputReserve The amount of output tokens in the reserve. * @return outputAmount The amount of output tokens. * @return factoryFee The amount of factory fee. * @return tradingFee The amount of trading fee. */ function getAmountOut( uint256 inputAmount, uint256 inputReserve, uint256 outputReserve ) public view returns (uint256 outputAmount, uint256 factoryFee, uint256 tradingFee) { // Scale by 1e4 to avoid rounding errors // Since the SCALE_FACTOR is 1e4, the precision total is 1e8 // This strikes a good balance between risk of overflow and precision uint256 precision = 1e4; uint256 feeFactor = SCALE_FACTOR - (BASE_SWAP_RATE + tradingFeeRate); uint256 inputAmountScaled = inputAmount * precision; // if reserves are greater than 0 if (inputReserve > 0 && outputReserve > 0) { factoryFee = _calculateFactoryFee(inputAmountScaled) / precision; tradingFee = _calculateTradingFee(inputAmountScaled) / precision; uint256 inputAmountWithFee = inputAmountScaled * feeFactor; uint256 numerator = inputAmountWithFee * outputReserve; uint256 denominator = (inputReserve * SCALE_FACTOR * precision) + inputAmountWithFee; unchecked { outputAmount = numerator / denominator; } } else { revert InvalidReserves(); } } /** * @dev Calculates the input amount and factory fee based on the output amount, output reserve, and input reserve. * This accounts for all fees including the factory fee, trading fee, and base swap rate. * @param outputAmount The desired output amount. * @param outputReserve The current output reserve. * @param inputReserve The current input reserve. * @return inputAmount The calculated input amount. */ function getAmountIn( uint256 outputAmount, uint256 inputReserve, uint256 outputReserve ) public view returns (uint256 inputAmount) { // Scale by 1e4 to avoid rounding errors // Since the SCALE_FACTOR is 1e4, the precision total is 1e8 // This strikes a good balance between risk of overflow and precision uint256 precision = 1e4; uint256 feeFactor = SCALE_FACTOR - (BASE_SWAP_RATE + tradingFeeRate); feeFactor = feeFactor * precision; // Ensure reserves are greater than 0 if (outputReserve > 0 && inputReserve > 0) { uint256 numerator = inputReserve * outputAmount * SCALE_FACTOR * precision; uint256 denominator = (outputReserve - outputAmount) * feeFactor; unchecked { inputAmount = (numerator / denominator) + 1; } } else { revert InvalidReserves(); } } /** * @dev Returns the number of tokens held by the contract. * @return tokenBalance The token balance of the contract. */ function getTokensInContract() public view returns (uint256 tokenBalance) { tokenBalance = super.balanceOf(address(this)); } /** * @dev Returns the reserves of the contract. * If the fees are greater than the reserves, the function returns 0 for the respective reserve. * @return amountNative The native reserve balance. * @return amountToken The token reserve balance. */ function getReserves() public view returns (uint256 amountNative, uint256 amountToken) { uint256 totalNative = address(this).balance; uint256 totalNativeFees = accruedNativeTradingFees + accruedNativeFactoryFees; uint256 totalToken = getTokensInContract(); uint256 totalTokenFees = accruedTokenTradingFees + accruedTokenFactoryFees; amountNative = totalNative >= totalNativeFees ? totalNative - totalNativeFees : 0; amountToken = totalToken >= totalTokenFees ? totalToken - totalTokenFees : 0; } /** * @dev Gets the amount of tokens held by the liquidity provider. * @param amount The amount of liquidity tokens to be converted. * @return nativeAmount The amount of native currency held by the liquidity provider. * @return tokenAmount The amount of tokens held by the liquidity provider. */ function getAmountsForLP( uint256 amount ) public view returns (uint256 nativeAmount, uint256 tokenAmount) { if (amount == 0) revert AmountMustBeGreaterThanZero(); (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); if (nativeReserve == 0 || tokenReserve == 0) revert InvalidReserves(); uint256 totalLPSupply = liquidityToken.totalSupply(); if (totalLPSupply == 0) revert InsufficientLiquidity(); nativeAmount = (amount * nativeReserve) / totalLPSupply; tokenAmount = (amount * tokenReserve) / totalLPSupply; if (nativeAmount == 0 || tokenAmount == 0) revert InsufficientLiquidity(); } /** * @dev Enables trading by setting the `tradingEnabled` flag to true. * Can only be called by the contract owner. * Once trading is enabled, it cannot be disabled. */ function setTradingEnabled() public onlyOwner { tradingEnabled = true; } /** * @dev Sets the fee collector address. * @param feeCollector_ The address of the fee collector. * @notice Only the contract owner can call this function. * @notice The fee collector address cannot be set to the zero address. */ function setFeeCollector(address feeCollector_) external onlyOwner { if (feeCollector_ == address(0)) revert InvalidAddress(); feeCollector = feeCollector_; } /** * @dev Sets the fee rate for trading. * @param feeRate The new fee rate to be set. * Requirements: * - `feeRate` must be less than or equal to 50 (5%). * Only the contract owner can call this function. */ function setTradingFeeRate(uint256 feeRate) public onlyOwner { if (feeRate > MAX_FEE_RATE) revert InvalidFeeRate(); // 5% tradingFeeRate = feeRate; } /** * @dev Sets the maximum wallet percentage. * @param maxWalletPercent_ The maximum wallet percentage to be set. * Requirements: * - `maxWalletPercent_` must be less than or equal to 10000 (100%) * and greater than 0 if maxWalletEnabled is true. * Only the contract owner can call this function. */ function setMaxWalletPercent(uint256 maxWalletPercent_) public onlyOwner { if (maxWalletPercent_ > 10000) revert InvalidMaxWalletPercent(); // 100% if (maxWalletEnabled && maxWalletPercent_ == 0) revert InvalidMaxWalletPercent(); maxWalletPercent = maxWalletPercent_; } /** * @dev Enables or disables the maximum wallet limit. * @param enabled The boolean value to set the maximum wallet limit. * Requirements: * - Only the contract owner can call this function. */ function setMaxWalletEnabled(bool enabled) public onlyOwner { if (enabled && maxWalletPercent == 0) revert InvalidMaxWalletPercent(); maxWalletEnabled = enabled; } /** * @dev Sets the metadata URI for the token. * @param newURI The new metadata URI to be set. * Requirements: * - Only the contract owner can call this function. */ function setMetadataURI(string memory newURI) public onlyOwner { metadataURI = newURI; } /** * @dev Sets the maximum wallet exemption status for a given address. * @param addressToChange The address for which the maximum wallet exemption status is to be set. * @param isExempt A boolean value indicating whether the address should be exempt from the maximum wallet limit. * Only the contract owner can call this function. * Requirements: * - The address to change cannot be the zero address, the contract address, or the dead address. * @notice If the address to change is the zero address, the contract address, or the dead address, the transaction will revert. */ function setMaxWalletExempt( address addressToChange, bool isExempt ) public onlyOwner { if ( !isExempt && (addressToChange == address(0) || addressToChange == address(this) || addressToChange == DEAD_ADDRESS) ) revert InvalidAddress(); isMaxWalletExempt[addressToChange] = isExempt; } /** * @dev Allows the fee collector to claim accrued trading fees. * The function transfers the accrued native currency and token trading fees to the fee collector. * The accrued amounts are reset to zero after the transfer. * Emits a `FeesCollected` event with the fee collector's address, accrued native amount, and accrued token amount. * * Requirements: * - The caller must be the fee collector. */ function claimFees() external onlyFeeCollector { uint256 accruedNativeAmount = accruedNativeTradingFees; uint256 accruedTokenAmount = accruedTokenTradingFees; address sender = _msgSender(); if (accruedNativeAmount == 0 && accruedTokenAmount == 0) revert NoFeesToClaim(); accruedNativeTradingFees = 0; // If the accrued token amount is greater than the balance of the contract // set the accrued token amount to the balance of the contract if (accruedTokenAmount > getTokensInContract()) accruedTokenAmount = getTokensInContract(); accruedTokenTradingFees = 0; _transferNative(sender, accruedNativeAmount); super._transfer(address(this), sender, accruedTokenAmount); emit FeesCollected(sender, accruedNativeAmount, accruedTokenAmount); } /** * @dev Transfers the ownership of the contract to a new address. * Can only be called by the current owner. * * @param newOwner The address of the new owner. */ function transferOwnership(address newOwner) public onlyOwner { if (newOwner == address(0)) revert InvalidOwner(); _transferOwnership(newOwner); } /** * @dev Allows the current owner to renounce their ownership. * It sets the owner address to 0, effectively removing the ownership. */ function renounceOwnership() external onlyOwner { _transferOwnership(address(0)); } /** * @dev Transfers the ownership of the contract to a new address. * Can only be called by the current owner. * * @param newOwner The address of the new owner. * @notice Emits an {OwnershipTransferred} event. */ function _transferOwnership(address newOwner) internal { address oldOwner = owner; owner = newOwner; emit OwnershipTransferred(oldOwner, newOwner); } /** * @dev Calculates the product of two input values. * @param reserve1 The first input value. * @param reserve2 The second input value. * @return kValue_ The product of the two input values. */ function _calculateKValue( uint256 reserve1, uint256 reserve2 ) internal pure returns (uint256 kValue_) { kValue_ = reserve1 * reserve2; } /** * @dev Internal function to calculate the trading fee for a given amount. * @param amount The amount to apply the fee to. * @return amountForFee The amount to be deducted as a trading fee. * @notice If the amount is zero, the transaction will revert. * @notice If the trading fee rate is zero, the function will return zero. * @notice If the trading fee rate is 500, the function will return 5% of the amount. */ function _calculateTradingFee( uint256 amount ) internal view returns (uint256 amountForFee) { // If the trading fee rate is 0, return 0 if (tradingFeeRate == 0) amountForFee = 0; else { amountForFee = (amount * tradingFeeRate) / SCALE_FACTOR; } } /** * @dev Calculates the factory fee based on the input amount. * @param inputAmount The input amount for which the factory fee needs to be calculated. * @return amountForFee The amount to be deducted as a factory fee. * @notice If the input amount is zero, the transaction will revert. * @notice If the factory contract is not set, the function will return zero. */ function _calculateFactoryFee( uint256 inputAmount ) internal view returns (uint256 amountForFee) { if (address(factory) == address(0)) { amountForFee = 0; } else { amountForFee = (inputAmount * factory.feeRate()) / SCALE_FACTOR; } } /** * @dev Checks if the recipient's wallet balance exceeds the maximum allowed amount. * @param recipient The address of the recipient. * @param amount The amount to be transferred. * @notice If the max wallet limit is exceeded, the transaction will revert. */ function _checkMaxWallet(address recipient, uint256 amount) internal view { if (!maxWalletEnabled) return; // Skip if max wallet is not enabled // Only apply the max wallet check if the recipient is not (this) contract, address(0), or the dead address // and if the recipient is not exempt from the max wallet limit if ( recipient == address(this) || recipient == address(0) || recipient == DEAD_ADDRESS || isMaxWalletExempt[recipient] ) { return; } uint256 maxWalletAmount = ((totalSupply() * maxWalletPercent) / 10000); if (balanceOf(recipient) + amount > maxWalletAmount) { revert MaxWalletAmountExceeded(); } } /** * @dev Internal function to check for swap errors. * @param tokensSold The number of tokens sold in the swap. * @param nativeReserve The native reserve balance. * @param tokenReserve The token reserve balance. * @notice If the contract is not initialized, the transaction will revert. * @notice If the reserves are invalid, the transaction will revert. * @notice If the swap is not enabled, the transaction will revert. * @notice If the amount of tokens sold is zero, the transaction will revert. */ function _checkForSwapErrors( uint256 tokensSold, uint256 nativeReserve, uint256 tokenReserve ) internal view { if (!isInitialized) revert ContractIsNotInitialized(); if (!tradingEnabled) revert SwapNotEnabled(); if (tokensSold == 0) { revert AmountMustBeGreaterThanZero(); } if (nativeReserve == 0 || tokenReserve == 0) revert InvalidReserves(); } /** * @dev Performs a swap operation between two reserves. * @param amountIn The amount of tokens being swapped in. * @param minimumAmountOut The minimum amount of tokens expected to be received. * @param reserveIn The reserve of the input token. * @param reserveOut The reserve of the output token. * @return amountOut The amount of tokens received after the swap. * @return factoryFee The fee charged by the factory for the swap. * @return tradingFee The fee charged for the swap. */ function _swap( uint256 amountIn, uint256 minimumAmountOut, uint256 reserveIn, uint256 reserveOut ) internal view returns (uint256 amountOut, uint256 factoryFee, uint256 tradingFee) { _checkForSwapErrors(amountIn, reserveIn, reserveOut); uint256 currentKValue = _calculateKValue(reserveIn, reserveOut); (amountOut, factoryFee, tradingFee) = getAmountOut( amountIn, reserveIn, reserveOut ); if (amountOut == 0) revert BoughtAmountTooLow(); if (amountOut < minimumAmountOut) revert SlippageToleranceExceeded(); uint256 newReserveIn = reserveIn + (amountIn - tradingFee - factoryFee); uint256 newReserveOut = reserveOut - amountOut; if (_calculateKValue(newReserveIn, newReserveOut) < currentKValue) revert DecreasesK(); } /** * @dev Calculates the cumulative prices based on the provided native and token reserves. */ function _updatePrices() private { (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); if (nativeReserve == 0 || tokenReserve == 0) revert InvalidReserves(); uint32 blockTimestamp = uint32(block.timestamp % 2 ** 32); uint32 timeElapsed = blockTimestamp - blockTimestampLast; // Overflow is desired if (timeElapsed > 0 && nativeReserve != 0 && tokenReserve != 0) { // Simulate fixed-point precision using a scaling factor uint256 scalingFactor = 2 ** 112; // Calculate price ratios with scaling to simulate UQ112x112 precision // Reflects the price of token in native currency uint256 price0Ratio = (nativeReserve * scalingFactor) / tokenReserve; // Reflects the price of native currency in token uint256 price1Ratio = (tokenReserve * scalingFactor) / nativeReserve; // Update cumulative prices price0CumulativeLast += price0Ratio * timeElapsed; price1CumulativeLast += price1Ratio * timeElapsed; // Update last block timestamp blockTimestampLast = blockTimestamp; } emit PricesUpdated( price0CumulativeLast, price1CumulativeLast, blockTimestampLast ); } /** * @dev Accrues fees to the contract. * @param factoryFee The amount of fees to be accrued. * @param native A boolean value indicating whether the fee is in native currency or not. */ function _handleFactoryFees(uint256 factoryFee, bool native) internal { // Check if the factory contract is set if (address(factory) != address(0)) { address feeTo = factory.feeTo(); uint256 distributionThreshold = factory.feeDistributionThreshold(); // Accrue fees and distribute if threshold is reached if (feeTo != address(0)) { if (native) { accruedNativeFactoryFees += factoryFee; } else { accruedTokenFactoryFees += factoryFee; } _distributeFees(feeTo, distributionThreshold); } } } /** * @dev Distributes fees to a specified address if the distribution threshold is reached. * @param feeTo The address to which the fees will be distributed. * @param distributionThreshold The threshold at which fees will be distributed. */ function _distributeFees( address feeTo, uint256 distributionThreshold ) internal { uint256 nativeFees = accruedNativeFactoryFees; uint256 tokenFees = accruedTokenFactoryFees; bool nativeDistributed = false; bool tokenDistributed = false; // Only distribute fees if either the native or token fees are greater than 0 if (nativeFees == 0 && tokenFees == 0) return; // Distribute native fees if threshold is reached if (nativeFees > 0 && nativeFees >= distributionThreshold) { accruedNativeFactoryFees = 0; nativeDistributed = true; } // Distribute token fees if threshold is reached if (tokenFees > 0) { (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); uint256 nativeAmount = (tokenFees * nativeReserve) / tokenReserve; if (nativeAmount >= distributionThreshold) { if (tokenFees > getTokensInContract()) { tokenFees = getTokensInContract(); } accruedTokenFactoryFees = 0; tokenDistributed = true; } } if (nativeDistributed) _transferNative(feeTo, nativeFees); if (tokenDistributed) super._transfer(address(this), feeTo, tokenFees); // Emit event if fees are distributed if (nativeDistributed || tokenDistributed) emit FeesDistributed(feeTo, nativeFees, tokenFees); } /** * @dev Internal function to transfer native currency to a specified address. * @param to The address to transfer the native currency to. * @param amount The amount of native currency to transfer. * @notice If the transfer fails, the transaction will revert. */ function _transferNative(address to, uint256 amount) internal { if (amount == 0) return; if (to == address(0)) revert InvalidAddress(); if (amount > address(this).balance) { amount = address(this).balance; } (bool success, ) = payable(to).call{value: amount}(""); if (!success) revert FailedToSendNativeCurrency(); } /** * @dev Calculates the fee based on the given amount. * @param amount The amount for which the fee needs to be calculated. * @return flashswapFee The calculated fee. */ function _calculateFlashswapFee( uint256 amount ) internal pure returns (uint256 flashswapFee) { flashswapFee = (amount * FLASHSWAP_FEE_RATE) / SCALE_FACTOR; // Fee calculation } /** * @dev Calculates the minimum amount out with slippage for an auto swap. * @param amount The input amount. * @param isNative A boolean indicating whether the input is in the native token or not. * @return amountOutMin The minimum amount out with slippage. */ function _calculateAutoSwapSlippage( uint256 amount, bool isNative ) internal view returns (uint256 amountOutMin) { (uint256 nativeReserve, uint256 tokenReserve) = getReserves(); (uint256 amountOut, , ) = getAmountOut( amount, isNative ? nativeReserve : tokenReserve, isNative ? tokenReserve : nativeReserve ); amountOutMin = amountOut - (amountOut / 20); // 5% slippage } // Function to receive native /** * @dev Fallback function to receive native currency. * It calls the `swapNativeToToken` function with a minimum token out amount of 0 (i.e. infinite slippage). */ receive() external payable { if (!_autoSwapIsPrevented()) { swapNativeToToken( _calculateAutoSwapSlippage(msg.value, true), block.timestamp + 3 minutes ); } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/math/Math.sol) pragma solidity ^0.8.20; /** * @dev Standard math utilities missing in the Solidity language. */ library Math { /** * @dev Muldiv operation overflow. */ error MathOverflowedMulDiv(); enum Rounding { Floor, // Toward negative infinity Ceil, // Toward positive infinity Trunc, // Toward zero Expand // Away from zero } /** * @dev Returns the addition of two unsigned integers, with an overflow flag. */ function tryAdd(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { uint256 c = a + b; if (c < a) return (false, 0); return (true, c); } } /** * @dev Returns the subtraction of two unsigned integers, with an overflow flag. */ function trySub(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b > a) return (false, 0); return (true, a - b); } } /** * @dev Returns the multiplication of two unsigned integers, with an overflow flag. */ function tryMul(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { // Gas optimization: this is cheaper than requiring 'a' not being zero, but the // benefit is lost if 'b' is also tested. // See: https://github.com/OpenZeppelin/openzeppelin-contracts/pull/522 if (a == 0) return (true, 0); uint256 c = a * b; if (c / a != b) return (false, 0); return (true, c); } } /** * @dev Returns the division of two unsigned integers, with a division by zero flag. */ function tryDiv(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a / b); } } /** * @dev Returns the remainder of dividing two unsigned integers, with a division by zero flag. */ function tryMod(uint256 a, uint256 b) internal pure returns (bool, uint256) { unchecked { if (b == 0) return (false, 0); return (true, a % b); } } /** * @dev Returns the largest of two numbers. */ function max(uint256 a, uint256 b) internal pure returns (uint256) { return a > b ? a : b; } /** * @dev Returns the smallest of two numbers. */ function min(uint256 a, uint256 b) internal pure returns (uint256) { return a < b ? a : b; } /** * @dev Returns the average of two numbers. The result is rounded towards * zero. */ function average(uint256 a, uint256 b) internal pure returns (uint256) { // (a + b) / 2 can overflow. return (a & b) + (a ^ b) / 2; } /** * @dev Returns the ceiling of the division of two numbers. * * This differs from standard division with `/` in that it rounds towards infinity instead * of rounding towards zero. */ function ceilDiv(uint256 a, uint256 b) internal pure returns (uint256) { if (b == 0) { // Guarantee the same behavior as in a regular Solidity division. return a / b; } // (a + b - 1) / b can overflow on addition, so we distribute. return a == 0 ? 0 : (a - 1) / b + 1; } /** * @notice Calculates floor(x * y / denominator) with full precision. Throws if result overflows a uint256 or * denominator == 0. * @dev Original credit to Remco Bloemen under MIT license (https://xn--2-umb.com/21/muldiv) with further edits by * Uniswap Labs also under MIT license. */ function mulDiv(uint256 x, uint256 y, uint256 denominator) internal pure returns (uint256 result) { unchecked { // 512-bit multiply [prod1 prod0] = x * y. Compute the product mod 2^256 and mod 2^256 - 1, then use // use the Chinese Remainder Theorem to reconstruct the 512 bit result. The result is stored in two 256 // variables such that product = prod1 * 2^256 + prod0. uint256 prod0 = x * y; // Least significant 256 bits of the product uint256 prod1; // Most significant 256 bits of the product assembly { let mm := mulmod(x, y, not(0)) prod1 := sub(sub(mm, prod0), lt(mm, prod0)) } // Handle non-overflow cases, 256 by 256 division. if (prod1 == 0) { // Solidity will revert if denominator == 0, unlike the div opcode on its own. // The surrounding unchecked block does not change this fact. // See https://docs.soliditylang.org/en/latest/control-structures.html#checked-or-unchecked-arithmetic. return prod0 / denominator; } // Make sure the result is less than 2^256. Also prevents denominator == 0. if (denominator <= prod1) { revert MathOverflowedMulDiv(); } /////////////////////////////////////////////// // 512 by 256 division. /////////////////////////////////////////////// // Make division exact by subtracting the remainder from [prod1 prod0]. uint256 remainder; assembly { // Compute remainder using mulmod. remainder := mulmod(x, y, denominator) // Subtract 256 bit number from 512 bit number. prod1 := sub(prod1, gt(remainder, prod0)) prod0 := sub(prod0, remainder) } // Factor powers of two out of denominator and compute largest power of two divisor of denominator. // Always >= 1. See https://cs.stackexchange.com/q/138556/92363. uint256 twos = denominator & (0 - denominator); assembly { // Divide denominator by twos. denominator := div(denominator, twos) // Divide [prod1 prod0] by twos. prod0 := div(prod0, twos) // Flip twos such that it is 2^256 / twos. If twos is zero, then it becomes one. twos := add(div(sub(0, twos), twos), 1) } // Shift in bits from prod1 into prod0. prod0 |= prod1 * twos; // Invert denominator mod 2^256. Now that denominator is an odd number, it has an inverse modulo 2^256 such // that denominator * inv = 1 mod 2^256. Compute the inverse by starting with a seed that is correct for // four bits. That is, denominator * inv = 1 mod 2^4. uint256 inverse = (3 * denominator) ^ 2; // Use the Newton-Raphson iteration to improve the precision. Thanks to Hensel's lifting lemma, this also // works in modular arithmetic, doubling the correct bits in each step. inverse *= 2 - denominator * inverse; // inverse mod 2^8 inverse *= 2 - denominator * inverse; // inverse mod 2^16 inverse *= 2 - denominator * inverse; // inverse mod 2^32 inverse *= 2 - denominator * inverse; // inverse mod 2^64 inverse *= 2 - denominator * inverse; // inverse mod 2^128 inverse *= 2 - denominator * inverse; // inverse mod 2^256 // Because the division is now exact we can divide by multiplying with the modular inverse of denominator. // This will give us the correct result modulo 2^256. Since the preconditions guarantee that the outcome is // less than 2^256, this is the final result. We don't need to compute the high bits of the result and prod1 // is no longer required. result = prod0 * inverse; return result; } } /** * @notice Calculates x * y / denominator with full precision, following the selected rounding direction. */ function mulDiv(uint256 x, uint256 y, uint256 denominator, Rounding rounding) internal pure returns (uint256) { uint256 result = mulDiv(x, y, denominator); if (unsignedRoundsUp(rounding) && mulmod(x, y, denominator) > 0) { result += 1; } return result; } /** * @dev Returns the square root of a number. If the number is not a perfect square, the value is rounded * towards zero. * * Inspired by Henry S. Warren, Jr.'s "Hacker's Delight" (Chapter 11). */ function sqrt(uint256 a) internal pure returns (uint256) { if (a == 0) { return 0; } // For our first guess, we get the biggest power of 2 which is smaller than the square root of the target. // // We know that the "msb" (most significant bit) of our target number `a` is a power of 2 such that we have // `msb(a) <= a < 2*msb(a)`. This value can be written `msb(a)=2**k` with `k=log2(a)`. // // This can be rewritten `2**log2(a) <= a < 2**(log2(a) + 1)` // → `sqrt(2**k) <= sqrt(a) < sqrt(2**(k+1))` // → `2**(k/2) <= sqrt(a) < 2**((k+1)/2) <= 2**(k/2 + 1)` // // Consequently, `2**(log2(a) / 2)` is a good first approximation of `sqrt(a)` with at least 1 correct bit. uint256 result = 1 << (log2(a) >> 1); // At this point `result` is an estimation with one bit of precision. We know the true value is a uint128, // since it is the square root of a uint256. Newton's method converges quadratically (precision doubles at // every iteration). We thus need at most 7 iteration to turn our partial result with one bit of precision // into the expected uint128 result. unchecked { result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; result = (result + a / result) >> 1; return min(result, a / result); } } /** * @notice Calculates sqrt(a), following the selected rounding direction. */ function sqrt(uint256 a, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = sqrt(a); return result + (unsignedRoundsUp(rounding) && result * result < a ? 1 : 0); } } /** * @dev Return the log in base 2 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log2(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 128; } if (value >> 64 > 0) { value >>= 64; result += 64; } if (value >> 32 > 0) { value >>= 32; result += 32; } if (value >> 16 > 0) { value >>= 16; result += 16; } if (value >> 8 > 0) { value >>= 8; result += 8; } if (value >> 4 > 0) { value >>= 4; result += 4; } if (value >> 2 > 0) { value >>= 2; result += 2; } if (value >> 1 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 2, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log2(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log2(value); return result + (unsignedRoundsUp(rounding) && 1 << result < value ? 1 : 0); } } /** * @dev Return the log in base 10 of a positive value rounded towards zero. * Returns 0 if given 0. */ function log10(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >= 10 ** 64) { value /= 10 ** 64; result += 64; } if (value >= 10 ** 32) { value /= 10 ** 32; result += 32; } if (value >= 10 ** 16) { value /= 10 ** 16; result += 16; } if (value >= 10 ** 8) { value /= 10 ** 8; result += 8; } if (value >= 10 ** 4) { value /= 10 ** 4; result += 4; } if (value >= 10 ** 2) { value /= 10 ** 2; result += 2; } if (value >= 10 ** 1) { result += 1; } } return result; } /** * @dev Return the log in base 10, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log10(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log10(value); return result + (unsignedRoundsUp(rounding) && 10 ** result < value ? 1 : 0); } } /** * @dev Return the log in base 256 of a positive value rounded towards zero. * Returns 0 if given 0. * * Adding one to the result gives the number of pairs of hex symbols needed to represent `value` as a hex string. */ function log256(uint256 value) internal pure returns (uint256) { uint256 result = 0; unchecked { if (value >> 128 > 0) { value >>= 128; result += 16; } if (value >> 64 > 0) { value >>= 64; result += 8; } if (value >> 32 > 0) { value >>= 32; result += 4; } if (value >> 16 > 0) { value >>= 16; result += 2; } if (value >> 8 > 0) { result += 1; } } return result; } /** * @dev Return the log in base 256, following the selected rounding direction, of a positive value. * Returns 0 if given 0. */ function log256(uint256 value, Rounding rounding) internal pure returns (uint256) { unchecked { uint256 result = log256(value); return result + (unsignedRoundsUp(rounding) && 1 << (result << 3) < value ? 1 : 0); } } /** * @dev Returns whether a provided rounding mode is considered rounding up for unsigned integers. */ function unsignedRoundsUp(Rounding rounding) internal pure returns (bool) { return uint8(rounding) % 2 == 1; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (utils/ReentrancyGuard.sol) pragma solidity ^0.8.20; /** * @dev Contract module that helps prevent reentrant calls to a function. * * Inheriting from `ReentrancyGuard` will make the {nonReentrant} modifier * available, which can be applied to functions to make sure there are no nested * (reentrant) calls to them. * * Note that because there is a single `nonReentrant` guard, functions marked as * `nonReentrant` may not call one another. This can be worked around by making * those functions `private`, and then adding `external` `nonReentrant` entry * points to them. * * TIP: If you would like to learn more about reentrancy and alternative ways * to protect against it, check out our blog post * https://blog.openzeppelin.com/reentrancy-after-istanbul/[Reentrancy After Istanbul]. */ abstract contract ReentrancyGuard { // Booleans are more expensive than uint256 or any type that takes up a full // word because each write operation emits an extra SLOAD to first read the // slot's contents, replace the bits taken up by the boolean, and then write // back. This is the compiler's defense against contract upgrades and // pointer aliasing, and it cannot be disabled. // The values being non-zero value makes deployment a bit more expensive, // but in exchange the refund on every call to nonReentrant will be lower in // amount. Since refunds are capped to a percentage of the total // transaction's gas, it is best to keep them low in cases like this one, to // increase the likelihood of the full refund coming into effect. uint256 private constant NOT_ENTERED = 1; uint256 private constant ENTERED = 2; uint256 private _status; /** * @dev Unauthorized reentrant call. */ error ReentrancyGuardReentrantCall(); constructor() { _status = NOT_ENTERED; } /** * @dev Prevents a contract from calling itself, directly or indirectly. * Calling a `nonReentrant` function from another `nonReentrant` * function is not supported. It is possible to prevent this from happening * by making the `nonReentrant` function external, and making it call a * `private` function that does the actual work. */ modifier nonReentrant() { _nonReentrantBefore(); _; _nonReentrantAfter(); } function _nonReentrantBefore() private { // On the first call to nonReentrant, _status will be NOT_ENTERED if (_status == ENTERED) { revert ReentrancyGuardReentrantCall(); } // Any calls to nonReentrant after this point will fail _status = ENTERED; } function _nonReentrantAfter() private { // By storing the original value once again, a refund is triggered (see // https://eips.ethereum.org/EIPS/eip-2200) _status = NOT_ENTERED; } /** * @dev Returns true if the reentrancy guard is currently set to "entered", which indicates there is a * `nonReentrant` function in the call stack. */ function _reentrancyGuardEntered() internal view returns (bool) { return _status == ENTERED; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; interface IERC314Events { event AddLiquidity( address indexed provider, address indexed toAddress, uint256 liquidityMinted, uint256 nativeAmount, uint256 tokenAmount ); event RemoveLiquidity( address indexed provider, address indexed toAddress, uint256 liquidityBurned, uint256 nativeAmount, uint256 tokenAmount ); event Swap( address indexed sender, uint256 amountTokenIn, uint256 amountNativeIn, uint256 amountTokenOut, uint256 amountNativeOut, bool flashSwap ); event PricesUpdated( uint256 tokenPriceInNative, uint256 nativePriceInToken, uint32 blockTimestampLast ); event OwnershipTransferred( address indexed previousOwner, address indexed newOwner ); event FeesCollected( address indexed recipient, uint256 amountNative, uint256 amountToken ); event FeesDistributed( address indexed feeTo, uint256 nativeAmount, uint256 tokenAmount ); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; interface IERC314Errors { error AmountOfTokensLessThanMinimumRequired( uint256 amount, uint256 minimumAmount ); error AmountMustBeGreaterThanZero(); error YouHaveNoLiquidity(); error InsufficientLiquidity(); error InvalidReserves(); error ContractIsNotInitialized(); error InsufficientLiquidityMinted(); error SwapNotEnabled(); error DecreasesK(); error TransactionExpired(); error SlippageToleranceExceeded(); error InvalidRecipient(); error FailedToSendNativeCurrency(); error NativeRepaymentFailed(); error TokenRepaymentFailed(); error Unauthorized(address sender); error SupplyAlreadyMinted(); error InvalidOwner(); error InvalidAddress(); error InvalidFeeRate(); error BoughtAmountTooLow(); error NoFeesToClaim(); error InvalidMaxWalletPercent(); error MaxWalletAmountExceeded(); error AlreadyInitialized(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; interface IBIFKN314CALLEE { function BIFKN314CALL( address sender, uint256 amount0, uint256 amount1, bytes calldata data ) external; }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; interface IBIFKN314Factory { function feeTo() external view returns (address); function feeRate() external view returns (uint256); function feeToSetter() external view returns (address); function feeDistributionThreshold() external view returns (uint256); function deployBIFKN314( string memory tokenName, string memory tokenSymbol, uint256 totalSupply, address owner_, uint256 tradingFee, uint256 maxWalletPercent, string memory metadataURI ) external payable returns (address contractAddress, address liquidityTokenAddress); function deployBIFKN314WithSalt( string memory tokenName, string memory tokenSymbol, uint256 totalSupply, address owner_, uint256 tradingFee, uint256 maxWalletPercent, string memory metadataURI, bytes32 salt ) external payable returns (address contractAddress, address liquidityTokenAddress); function getDeterministicAddress( bytes32 salt ) external view returns (address clone); function calculateDeterministicAddress( uint256 occur, address desiredPrefix, uint8 bytesDesired, bytes32 startSalt ) external view returns (bytes32 salt); event TokenCreated( address indexed deployer, string name, string symbol, address ammAddress, address lpAddress, uint256 allAMMLength ); event TokenRemoved( address indexed deployer, string name, string symbol, address ammAddress, address lpAddress, uint256 allAMMLength ); event FeeDistributed(address indexed feeTo, uint256 nativeAmount); error InvalidAddress(); error NameMustNotBeEmpty(); error SymbolMustNotBeEmpty(); error NameTooLong(); error SymbolTooLong(); error OnlyFeeToSetter(address sender); error InvalidTradingFee(); error SupplyMustBeGreaterThanZero(); error InsufficientDeploymentFee(); error InvalidFeeRate(); error InvalidMaxWalletPercent(); error DistributionFailed(); error ImplementationAlreadyDeployed(); error PreviousFactoryNotSet(); error InvalidRange(); error OutOfBounds(); }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; /** * @dev Contract module that helps prevent automatic swapping within a function call * for specific callers, allowing for finer control over when swapping should be prevented. * * This version uses a mapping to track the prevention status for each caller, * making it context-sensitive and allowing for certain operations to not affect others. */ abstract contract PreventAutoSwap { mapping(address => bool) private _autoSwapPreventedFor; /** * @dev Thrown when an operation tries to perform an auto-swap and it is prevented for the caller. */ error AutoSwapPrevented(); /** * @dev Prevents auto-swap for the caller of the function this modifier is applied to. * This approach allows differentiating between various operations and callers, * giving more control over the swapping mechanism. */ modifier preventAutoSwap() { _preventAutoSwapBefore(); _; _preventAutoSwapAfter(); } /** * @dev Prevents automatic swapping before executing a transaction. * If the msg.sender has already prevented auto swapping, it reverts with an `AutoSwapPrevented` error. * Otherwise, it marks the transaction origin as prevented for auto swapping. */ function _preventAutoSwapBefore() private { if (_autoSwapPreventedFor[msg.sender]) { revert AutoSwapPrevented(); } _autoSwapPreventedFor[msg.sender] = true; } /** * @dev Internal function to prevent auto swap after a transaction. * @notice This function sets the `_autoSwapPreventedFor` mapping value for the `msg.sender` address to `false`. * @notice Auto swap refers to an automatic swapping of tokens that may occur during a transaction. * @notice By calling this function, the auto swap is prevented for the `msg.sender` address. * @notice This function is private and can only be called from within the contract. */ function _preventAutoSwapAfter() private { _autoSwapPreventedFor[msg.sender] = false; } /** * @dev Returns true if auto swap is currently prevented for the caller. */ function _autoSwapIsPrevented() internal view returns (bool) { return _autoSwapPreventedFor[msg.sender]; } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import "./BIFKNERC20.sol"; /** * @title BIFKN314LP * @dev Implementation of the liquidity provider (LP) token for the BIFKN314 AMM pool. */ contract BIFKN314LP is BIFKNERC20 { /** * @dev The address of the Automated Market Maker (AMM) contract. */ address public immutable ammAddress; error Unauthorized(address sender); /** * @dev Modifier that allows only the owner (amm) to call the function. * If the caller is not the owner, it will revert with an `OnlyOwnerError` error. */ modifier onlyOwner() { if (_msgSender() != ammAddress) revert Unauthorized(_msgSender()); _; } /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor() BIFKNERC20() { ammAddress = _msgSender(); } /** * @dev Initializes the contract with the given name and symbol. * * This function is called by the contract owner to initialize the contract. * It sets the name and symbol of the contract by calling the `initialize` function * of the parent contract. * * @param tokenName The name of the contract. * @param tokenSymbol The symbol of the contract. */ function initialize( string memory tokenName, string memory tokenSymbol ) public override onlyOwner { super.initialize(tokenName, tokenSymbol); } /** * @dev Function to mint tokens * * Requirements: * - the caller must be the BIFKN314 contract. * * @param account The address that will receive the minted tokens. * @param amount The amount of tokens to mint. */ function mint(address account, uint256 amount) public onlyOwner { super._mint(account, amount); } }
// SPDX-License-Identifier: MIT pragma solidity 0.8.20; import "./ERC20.sol"; /** * @title BIFKNERC20 * @dev This contract represents the BIFKNERC20 token. */ contract BIFKNERC20 is ERC20 { /** * @dev The `DOMAIN_SEPARATOR` is a unique identifier for the contract domain. * It is used to prevent replay attacks and to ensure that the contract is interacting with the correct domain. */ bytes32 public DOMAIN_SEPARATOR; /** * @dev The hash of the permit type used in the EIP-2612 permit function. */ bytes32 public constant PERMIT_TYPEHASH = 0x6e71edae12b1b97f4d1f60370fef10105fa2faae0126114a169c64845d6126c9; /** * @dev A mapping that stores the nonces for each address. * Nonces are used to prevent replay attacks in certain operations. * The key of the mapping is the address and the value is the nonce. */ mapping(address => uint256) public nonces; /** * @dev Error indicating that the name and symbol must not be empty. */ error NameAndSymbolMustNotBeEmpty(); /** * @dev Error indicating that the name and symbol of the ERC20 token have already been set. */ error NameAndSymbolAlreadySet(); /** * @dev Error indicating that the signature has expired for ERC2612. * @param deadline The timestamp representing the expiration deadline. */ error ERC2612ExpiredSignature(uint256 deadline); /** * @dev Error indicating that the signer is invalid. * @param signer The address of the invalid signer. * @param owner The address of the token owner. */ error ERC2612InvalidSigner(address signer, address owner); /** * @dev Constructor function for the BIFKNERC20 contract. * It initializes the ERC20 contract and the EIP712 contract. * It also sets the DOMAIN_SEPARATOR variable using the _domainSeparatorV4 function. */ constructor() ERC20() {} /** * @dev Initializes the ERC20 token with the given name and symbol. * @param tokenName The name of the token. * @param tokenSymbol The symbol of the token. */ function initialize( string memory tokenName, string memory tokenSymbol ) public virtual { if (bytes(tokenName).length == 0 || bytes(tokenSymbol).length == 0) { revert NameAndSymbolMustNotBeEmpty(); } if (bytes(_name).length != 0 || bytes(_symbol).length != 0) { revert NameAndSymbolAlreadySet(); } _name = tokenName; _symbol = tokenSymbol; DOMAIN_SEPARATOR = keccak256( abi.encode( keccak256( "EIP712Domain(string name,string version,uint256 chainId,address verifyingContract)" ), keccak256(bytes(_name)), keccak256(bytes("1")), block.chainid, address(this) ) ); } /** * @dev Allows `owner` to approve `spender` to spend `value` tokens on their behalf using a signed permit. * @param owner The address of the token owner. * @param spender The address of the spender. * @param value The amount of tokens to be approved. * @param deadline The deadline timestamp for the permit. * @param v The recovery id of the permit signature. * @param r The r value of the permit signature. * @param s The s value of the permit signature. * Requirements: * - The permit must not be expired (deadline not reached). * - The permit signature must be valid. */ function permit( address owner, address spender, uint256 value, uint256 deadline, uint8 v, bytes32 r, bytes32 s ) external { if (deadline < block.timestamp) { revert ERC2612ExpiredSignature(deadline); } bytes32 digest = keccak256( abi.encodePacked( "\x19\x01", DOMAIN_SEPARATOR, keccak256( abi.encode( PERMIT_TYPEHASH, owner, spender, value, nonces[owner]++, deadline ) ) ) ); address recoveredAddress = ecrecover(digest, v, r, s); if (recoveredAddress == address(0) || recoveredAddress != owner) { revert ERC2612InvalidSigner(recoveredAddress, owner); } _approve(owner, spender, value); } /** * @dev Burns a specific amount of tokens from the caller's balance. * @param value The amount of tokens to be burned. */ function burn(uint256 value) public virtual { _burn(_msgSender(), value); } /** * @dev Burns a specific amount of tokens from the specified account. * * Requirements: * - The caller must have an allowance for `account`'s tokens of at least `value`. * * Emits a {Transfer} event with `from` set to `account`. */ function burnFrom(address account, uint256 value) public virtual { _spendAllowance(account, _msgSender(), value); _burn(account, value); } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/ERC20.sol) pragma solidity 0.8.20; import {IERC20} from "@openzeppelin/contracts/token/ERC20/IERC20.sol"; import {IERC20Metadata} from "@openzeppelin/contracts/token/ERC20/extensions/IERC20Metadata.sol"; import {Context} from "@openzeppelin/contracts/utils/Context.sol"; import {IERC20Errors} from "@openzeppelin/contracts/interfaces/draft-IERC6093.sol"; /** * @dev Implementation of the {IERC20} interface. * * This implementation is agnostic to the way tokens are created. This means * that a supply mechanism has to be added in a derived contract using {_mint}. * * TIP: For a detailed writeup see our guide * https://forum.openzeppelin.com/t/how-to-implement-erc20-supply-mechanisms/226[How * to implement supply mechanisms]. * * The default value of {decimals} is 18. To change this, you should override * this function so it returns a different value. * * We have followed general OpenZeppelin Contracts guidelines: functions revert * instead returning `false` on failure. This behavior is nonetheless * conventional and does not conflict with the expectations of ERC20 * applications. * * Additionally, an {Approval} event is emitted on calls to {transferFrom}. * This allows applications to reconstruct the allowance for all accounts just * by listening to said events. Other implementations of the EIP may not emit * these events, as it isn't required by the specification. */ abstract contract ERC20 is Context, IERC20, IERC20Metadata, IERC20Errors { mapping(address account => uint256) private _balances; mapping(address account => mapping(address spender => uint256)) private _allowances; uint256 private _totalSupply; string internal _name; string internal _symbol; /** * @dev Sets the values for {name} and {symbol}. * * All two of these values are immutable: they can only be set once during * construction. */ constructor() {} /** * @dev Returns the name of the token. */ function name() public view virtual returns (string memory) { return _name; } /** * @dev Returns the symbol of the token, usually a shorter version of the * name. */ function symbol() public view virtual returns (string memory) { return _symbol; } /** * @dev Returns the number of decimals used to get its user representation. * For example, if `decimals` equals `2`, a balance of `505` tokens should * be displayed to a user as `5.05` (`505 / 10 ** 2`). * * Tokens usually opt for a value of 18, imitating the relationship between * Ether and Wei. This is the default value returned by this function, unless * it's overridden. * * NOTE: This information is only used for _display_ purposes: it in * no way affects any of the arithmetic of the contract, including * {IERC20-balanceOf} and {IERC20-transfer}. */ function decimals() public view virtual returns (uint8) { return 18; } /** * @dev See {IERC20-totalSupply}. */ function totalSupply() public view virtual returns (uint256) { return _totalSupply; } /** * @dev See {IERC20-balanceOf}. */ function balanceOf(address account) public view virtual returns (uint256) { return _balances[account]; } /** * @dev See {IERC20-transfer}. * * Requirements: * * - `to` cannot be the zero address. * - the caller must have a balance of at least `value`. */ function transfer(address to, uint256 value) public virtual returns (bool) { address owner = _msgSender(); _transfer(owner, to, value); return true; } /** * @dev See {IERC20-allowance}. */ function allowance( address owner, address spender ) public view virtual returns (uint256) { return _allowances[owner][spender]; } /** * @dev See {IERC20-approve}. * * NOTE: If `value` is the maximum `uint256`, the allowance is not updated on * `transferFrom`. This is semantically equivalent to an infinite approval. * * Requirements: * * - `spender` cannot be the zero address. */ function approve( address spender, uint256 value ) public virtual returns (bool) { address owner = _msgSender(); _approve(owner, spender, value); return true; } /** * @dev See {IERC20-transferFrom}. * * Emits an {Approval} event indicating the updated allowance. This is not * required by the EIP. See the note at the beginning of {ERC20}. * * NOTE: Does not update the allowance if the current allowance * is the maximum `uint256`. * * Requirements: * * - `from` and `to` cannot be the zero address. * - `from` must have a balance of at least `value`. * - the caller must have allowance for ``from``'s tokens of at least * `value`. */ function transferFrom( address from, address to, uint256 value ) public virtual returns (bool) { address spender = _msgSender(); _spendAllowance(from, spender, value); _transfer(from, to, value); return true; } /** * @dev Moves a `value` amount of tokens from `from` to `to`. * * This internal function is equivalent to {transfer}, and can be used to * e.g. implement automatic token fees, slashing mechanisms, etc. * * Emits a {Transfer} event. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _transfer(address from, address to, uint256 value) internal { if (from == address(0)) { revert ERC20InvalidSender(address(0)); } if (to == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(from, to, value); } /** * @dev Transfers a `value` amount of tokens from `from` to `to`, or alternatively mints (or burns) if `from` * (or `to`) is the zero address. All customizations to transfers, mints, and burns should be done by overriding * this function. * * Emits a {Transfer} event. */ function _update(address from, address to, uint256 value) internal virtual { if (from == address(0)) { // Overflow check required: The rest of the code assumes that totalSupply never overflows _totalSupply += value; } else { uint256 fromBalance = _balances[from]; if (fromBalance < value) { revert ERC20InsufficientBalance(from, fromBalance, value); } unchecked { // Overflow not possible: value <= fromBalance <= totalSupply. _balances[from] = fromBalance - value; } } if (to == address(0)) { unchecked { // Overflow not possible: value <= totalSupply or value <= fromBalance <= totalSupply. _totalSupply -= value; } } else { unchecked { // Overflow not possible: balance + value is at most totalSupply, which we know fits into a uint256. _balances[to] += value; } } emit Transfer(from, to, value); } /** * @dev Creates a `value` amount of tokens and assigns them to `account`, by transferring it from address(0). * Relies on the `_update` mechanism * * Emits a {Transfer} event with `from` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead. */ function _mint(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidReceiver(address(0)); } _update(address(0), account, value); } /** * @dev Destroys a `value` amount of tokens from `account`, lowering the total supply. * Relies on the `_update` mechanism. * * Emits a {Transfer} event with `to` set to the zero address. * * NOTE: This function is not virtual, {_update} should be overridden instead */ function _burn(address account, uint256 value) internal { if (account == address(0)) { revert ERC20InvalidSender(address(0)); } _update(account, address(0), value); } /** * @dev Sets `value` as the allowance of `spender` over the `owner` s tokens. * * This internal function is equivalent to `approve`, and can be used to * e.g. set automatic allowances for certain subsystems, etc. * * Emits an {Approval} event. * * Requirements: * * - `owner` cannot be the zero address. * - `spender` cannot be the zero address. * * Overrides to this logic should be done to the variant with an additional `bool emitEvent` argument. */ function _approve(address owner, address spender, uint256 value) internal { _approve(owner, spender, value, true); } /** * @dev Variant of {_approve} with an optional flag to enable or disable the {Approval} event. * * By default (when calling {_approve}) the flag is set to true. On the other hand, approval changes made by * `_spendAllowance` during the `transferFrom` operation set the flag to false. This saves gas by not emitting any * `Approval` event during `transferFrom` operations. * * Anyone who wishes to continue emitting `Approval` events on the`transferFrom` operation can force the flag to * true using the following override: * ``` * function _approve(address owner, address spender, uint256 value, bool) internal virtual override { * super._approve(owner, spender, value, true); * } * ``` * * Requirements are the same as {_approve}. */ function _approve( address owner, address spender, uint256 value, bool emitEvent ) internal virtual { if (owner == address(0)) { revert ERC20InvalidApprover(address(0)); } if (spender == address(0)) { revert ERC20InvalidSpender(address(0)); } _allowances[owner][spender] = value; if (emitEvent) { emit Approval(owner, spender, value); } } /** * @dev Updates `owner` s allowance for `spender` based on spent `value`. * * Does not update the allowance value in case of infinite allowance. * Revert if not enough allowance is available. * * Does not emit an {Approval} event. */ function _spendAllowance( address owner, address spender, uint256 value ) internal virtual { uint256 currentAllowance = allowance(owner, spender); if (currentAllowance != type(uint256).max) { if (currentAllowance < value) { revert ERC20InsufficientAllowance( spender, currentAllowance, value ); } unchecked { _approve(owner, spender, currentAllowance - value, false); } } } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (interfaces/draft-IERC6093.sol) pragma solidity ^0.8.20; /** * @dev Standard ERC20 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC20 tokens. */ interface IERC20Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientBalance(address sender, uint256 balance, uint256 needed); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC20InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC20InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `spender`’s `allowance`. Used in transfers. * @param spender Address that may be allowed to operate on tokens without being their owner. * @param allowance Amount of tokens a `spender` is allowed to operate with. * @param needed Minimum amount required to perform a transfer. */ error ERC20InsufficientAllowance(address spender, uint256 allowance, uint256 needed); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC20InvalidApprover(address approver); /** * @dev Indicates a failure with the `spender` to be approved. Used in approvals. * @param spender Address that may be allowed to operate on tokens without being their owner. */ error ERC20InvalidSpender(address spender); } /** * @dev Standard ERC721 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC721 tokens. */ interface IERC721Errors { /** * @dev Indicates that an address can't be an owner. For example, `address(0)` is a forbidden owner in EIP-20. * Used in balance queries. * @param owner Address of the current owner of a token. */ error ERC721InvalidOwner(address owner); /** * @dev Indicates a `tokenId` whose `owner` is the zero address. * @param tokenId Identifier number of a token. */ error ERC721NonexistentToken(uint256 tokenId); /** * @dev Indicates an error related to the ownership over a particular token. Used in transfers. * @param sender Address whose tokens are being transferred. * @param tokenId Identifier number of a token. * @param owner Address of the current owner of a token. */ error ERC721IncorrectOwner(address sender, uint256 tokenId, address owner); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC721InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC721InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param tokenId Identifier number of a token. */ error ERC721InsufficientApproval(address operator, uint256 tokenId); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC721InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC721InvalidOperator(address operator); } /** * @dev Standard ERC1155 Errors * Interface of the https://eips.ethereum.org/EIPS/eip-6093[ERC-6093] custom errors for ERC1155 tokens. */ interface IERC1155Errors { /** * @dev Indicates an error related to the current `balance` of a `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. * @param balance Current balance for the interacting account. * @param needed Minimum amount required to perform a transfer. * @param tokenId Identifier number of a token. */ error ERC1155InsufficientBalance(address sender, uint256 balance, uint256 needed, uint256 tokenId); /** * @dev Indicates a failure with the token `sender`. Used in transfers. * @param sender Address whose tokens are being transferred. */ error ERC1155InvalidSender(address sender); /** * @dev Indicates a failure with the token `receiver`. Used in transfers. * @param receiver Address to which tokens are being transferred. */ error ERC1155InvalidReceiver(address receiver); /** * @dev Indicates a failure with the `operator`’s approval. Used in transfers. * @param operator Address that may be allowed to operate on tokens without being their owner. * @param owner Address of the current owner of a token. */ error ERC1155MissingApprovalForAll(address operator, address owner); /** * @dev Indicates a failure with the `approver` of a token to be approved. Used in approvals. * @param approver Address initiating an approval operation. */ error ERC1155InvalidApprover(address approver); /** * @dev Indicates a failure with the `operator` to be approved. Used in approvals. * @param operator Address that may be allowed to operate on tokens without being their owner. */ error ERC1155InvalidOperator(address operator); /** * @dev Indicates an array length mismatch between ids and values in a safeBatchTransferFrom operation. * Used in batch transfers. * @param idsLength Length of the array of token identifiers * @param valuesLength Length of the array of token amounts */ error ERC1155InvalidArrayLength(uint256 idsLength, uint256 valuesLength); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.1) (utils/Context.sol) pragma solidity ^0.8.20; /** * @dev Provides information about the current execution context, including the * sender of the transaction and its data. While these are generally available * via msg.sender and msg.data, they should not be accessed in such a direct * manner, since when dealing with meta-transactions the account sending and * paying for execution may not be the actual sender (as far as an application * is concerned). * * This contract is only required for intermediate, library-like contracts. */ abstract contract Context { function _msgSender() internal view virtual returns (address) { return msg.sender; } function _msgData() internal view virtual returns (bytes calldata) { return msg.data; } function _contextSuffixLength() internal view virtual returns (uint256) { return 0; } }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/extensions/IERC20Metadata.sol) pragma solidity ^0.8.20; import {IERC20} from "../IERC20.sol"; /** * @dev Interface for the optional metadata functions from the ERC20 standard. */ interface IERC20Metadata is IERC20 { /** * @dev Returns the name of the token. */ function name() external view returns (string memory); /** * @dev Returns the symbol of the token. */ function symbol() external view returns (string memory); /** * @dev Returns the decimals places of the token. */ function decimals() external view returns (uint8); }
// SPDX-License-Identifier: MIT // OpenZeppelin Contracts (last updated v5.0.0) (token/ERC20/IERC20.sol) pragma solidity ^0.8.20; /** * @dev Interface of the ERC20 standard as defined in the EIP. */ interface IERC20 { /** * @dev Emitted when `value` tokens are moved from one account (`from`) to * another (`to`). * * Note that `value` may be zero. */ event Transfer(address indexed from, address indexed to, uint256 value); /** * @dev Emitted when the allowance of a `spender` for an `owner` is set by * a call to {approve}. `value` is the new allowance. */ event Approval(address indexed owner, address indexed spender, uint256 value); /** * @dev Returns the value of tokens in existence. */ function totalSupply() external view returns (uint256); /** * @dev Returns the value of tokens owned by `account`. */ function balanceOf(address account) external view returns (uint256); /** * @dev Moves a `value` amount of tokens from the caller's account to `to`. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transfer(address to, uint256 value) external returns (bool); /** * @dev Returns the remaining number of tokens that `spender` will be * allowed to spend on behalf of `owner` through {transferFrom}. This is * zero by default. * * This value changes when {approve} or {transferFrom} are called. */ function allowance(address owner, address spender) external view returns (uint256); /** * @dev Sets a `value` amount of tokens as the allowance of `spender` over the * caller's tokens. * * Returns a boolean value indicating whether the operation succeeded. * * IMPORTANT: Beware that changing an allowance with this method brings the risk * that someone may use both the old and the new allowance by unfortunate * transaction ordering. One possible solution to mitigate this race * condition is to first reduce the spender's allowance to 0 and set the * desired value afterwards: * https://github.com/ethereum/EIPs/issues/20#issuecomment-263524729 * * Emits an {Approval} event. */ function approve(address spender, uint256 value) external returns (bool); /** * @dev Moves a `value` amount of tokens from `from` to `to` using the * allowance mechanism. `value` is then deducted from the caller's * allowance. * * Returns a boolean value indicating whether the operation succeeded. * * Emits a {Transfer} event. */ function transferFrom(address from, address to, uint256 value) external returns (bool); }
{ "optimizer": { "enabled": true, "runs": 125 }, "outputSelection": { "*": { "*": [ "evm.bytecode", "evm.deployedBytecode", "devdoc", "userdoc", "metadata", "abi" ] } }, "remappings": [], "evmVersion": "paris" }
[{"inputs":[],"stateMutability":"nonpayable","type":"constructor"},{"inputs":[],"name":"AlreadyInitialized","type":"error"},{"inputs":[],"name":"AmountMustBeGreaterThanZero","type":"error"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"uint256","name":"minimumAmount","type":"uint256"}],"name":"AmountOfTokensLessThanMinimumRequired","type":"error"},{"inputs":[],"name":"AutoSwapPrevented","type":"error"},{"inputs":[],"name":"BoughtAmountTooLow","type":"error"},{"inputs":[],"name":"ContractIsNotInitialized","type":"error"},{"inputs":[],"name":"DecreasesK","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"allowance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientAllowance","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"uint256","name":"balance","type":"uint256"},{"internalType":"uint256","name":"needed","type":"uint256"}],"name":"ERC20InsufficientBalance","type":"error"},{"inputs":[{"internalType":"address","name":"approver","type":"address"}],"name":"ERC20InvalidApprover","type":"error"},{"inputs":[{"internalType":"address","name":"receiver","type":"address"}],"name":"ERC20InvalidReceiver","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"ERC20InvalidSender","type":"error"},{"inputs":[{"internalType":"address","name":"spender","type":"address"}],"name":"ERC20InvalidSpender","type":"error"},{"inputs":[{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"ERC2612ExpiredSignature","type":"error"},{"inputs":[{"internalType":"address","name":"signer","type":"address"},{"internalType":"address","name":"owner","type":"address"}],"name":"ERC2612InvalidSigner","type":"error"},{"inputs":[],"name":"FailedToSendNativeCurrency","type":"error"},{"inputs":[],"name":"InsufficientLiquidity","type":"error"},{"inputs":[],"name":"InsufficientLiquidityMinted","type":"error"},{"inputs":[],"name":"InvalidAddress","type":"error"},{"inputs":[],"name":"InvalidFeeRate","type":"error"},{"inputs":[],"name":"InvalidMaxWalletPercent","type":"error"},{"inputs":[],"name":"InvalidOwner","type":"error"},{"inputs":[],"name":"InvalidRecipient","type":"error"},{"inputs":[],"name":"InvalidReserves","type":"error"},{"inputs":[],"name":"MaxWalletAmountExceeded","type":"error"},{"inputs":[],"name":"NameAndSymbolAlreadySet","type":"error"},{"inputs":[],"name":"NameAndSymbolMustNotBeEmpty","type":"error"},{"inputs":[],"name":"NativeRepaymentFailed","type":"error"},{"inputs":[],"name":"NoFeesToClaim","type":"error"},{"inputs":[],"name":"ReentrancyGuardReentrantCall","type":"error"},{"inputs":[],"name":"SlippageToleranceExceeded","type":"error"},{"inputs":[],"name":"StillBonding","type":"error"},{"inputs":[],"name":"SupplyAlreadyMinted","type":"error"},{"inputs":[],"name":"SwapNotEnabled","type":"error"},{"inputs":[],"name":"TokenRepaymentFailed","type":"error"},{"inputs":[],"name":"TransactionExpired","type":"error"},{"inputs":[{"internalType":"address","name":"sender","type":"address"}],"name":"Unauthorized","type":"error"},{"inputs":[],"name":"YouHaveNoLiquidity","type":"error"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"provider","type":"address"},{"indexed":true,"internalType":"address","name":"toAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"liquidityMinted","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nativeAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"AddLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"owner","type":"address"},{"indexed":true,"internalType":"address","name":"spender","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Approval","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"recipient","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountNative","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountToken","type":"uint256"}],"name":"FeesCollected","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"feeTo","type":"address"},{"indexed":false,"internalType":"uint256","name":"nativeAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"FeesDistributed","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"previousOwner","type":"address"},{"indexed":true,"internalType":"address","name":"newOwner","type":"address"}],"name":"OwnershipTransferred","type":"event"},{"anonymous":false,"inputs":[{"indexed":false,"internalType":"uint256","name":"tokenPriceInNative","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nativePriceInToken","type":"uint256"},{"indexed":false,"internalType":"uint32","name":"blockTimestampLast","type":"uint32"}],"name":"PricesUpdated","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"provider","type":"address"},{"indexed":true,"internalType":"address","name":"toAddress","type":"address"},{"indexed":false,"internalType":"uint256","name":"liquidityBurned","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"nativeAmount","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"name":"RemoveLiquidity","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"sender","type":"address"},{"indexed":false,"internalType":"uint256","name":"amountTokenIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountNativeIn","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountTokenOut","type":"uint256"},{"indexed":false,"internalType":"uint256","name":"amountNativeOut","type":"uint256"},{"indexed":false,"internalType":"bool","name":"flashSwap","type":"bool"}],"name":"Swap","type":"event"},{"anonymous":false,"inputs":[{"indexed":true,"internalType":"address","name":"from","type":"address"},{"indexed":true,"internalType":"address","name":"to","type":"address"},{"indexed":false,"internalType":"uint256","name":"value","type":"uint256"}],"name":"Transfer","type":"event"},{"inputs":[],"name":"BASE_SWAP_RATE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DEAD_ADDRESS","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"DOMAIN_SEPARATOR","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"FLASHSWAP_FEE_RATE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MAX_FEE_RATE","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"MINIMUM_LIQUIDITY","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"PERMIT_TYPEHASH","outputs":[{"internalType":"bytes32","name":"","type":"bytes32"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"SCALE_FACTOR","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accruedNativeFactoryFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accruedNativeTradingFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accruedTokenFactoryFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"accruedTokenTradingFees","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amountToken_","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"addLiquidity","outputs":[{"internalType":"uint256","name":"liquidity","type":"uint256"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"}],"name":"allowance","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"approve","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"}],"name":"balanceOf","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"blockTimestampLast","outputs":[{"internalType":"uint32","name":"","type":"uint32"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burn","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"account","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"}],"name":"burnFrom","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"burstFactory","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"claimFees","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"completeTheCurve","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"curveComplete","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"decimals","outputs":[{"internalType":"uint8","name":"","type":"uint8"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"factory","outputs":[{"internalType":"contract IBIFKN314Factory","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"feeCollector","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amountNativeOut","type":"uint256"},{"internalType":"uint256","name":"amountTokenOut","type":"uint256"},{"internalType":"bytes","name":"data","type":"bytes"}],"name":"flashSwap","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"inputReserve","type":"uint256"},{"internalType":"uint256","name":"outputReserve","type":"uint256"}],"name":"getAmountIn","outputs":[{"internalType":"uint256","name":"inputAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"inputAmount","type":"uint256"},{"internalType":"uint256","name":"inputReserve","type":"uint256"},{"internalType":"uint256","name":"outputReserve","type":"uint256"}],"name":"getAmountOut","outputs":[{"internalType":"uint256","name":"outputAmount","type":"uint256"},{"internalType":"uint256","name":"factoryFee","type":"uint256"},{"internalType":"uint256","name":"tradingFee","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"getAmountsForLP","outputs":[{"internalType":"uint256","name":"nativeAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getReserves","outputs":[{"internalType":"uint256","name":"amountNative","type":"uint256"},{"internalType":"uint256","name":"amountToken","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"getTokensInContract","outputs":[{"internalType":"uint256","name":"tokenBalance","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"string","name":"tokenName","type":"string"},{"internalType":"string","name":"tokenSymbol","type":"string"}],"name":"initialize","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"burstFactory_","type":"address"}],"name":"initializeBurstToken","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"initializeFactory","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"isInitialized","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"isMaxWalletExempt","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"liquidityToken","outputs":[{"internalType":"contract BIFKN314LP","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWalletEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"maxWalletPercent","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"metadataURI","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"name","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"","type":"address"}],"name":"nonces","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"owner","outputs":[{"internalType":"address","name":"","type":"address"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"owner","type":"address"},{"internalType":"address","name":"spender","type":"address"},{"internalType":"uint256","name":"value","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"},{"internalType":"uint8","name":"v","type":"uint8"},{"internalType":"bytes32","name":"r","type":"bytes32"},{"internalType":"bytes32","name":"s","type":"bytes32"}],"name":"permit","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"price0CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"price1CumulativeLast","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"uint256","name":"amount","type":"uint256"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"removeLiquidity","outputs":[{"internalType":"uint256","name":"nativeAmount","type":"uint256"},{"internalType":"uint256","name":"tokenAmount","type":"uint256"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"renounceOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"feeCollector_","type":"address"}],"name":"setFeeCollector","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"bool","name":"enabled","type":"bool"}],"name":"setMaxWalletEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"addressToChange","type":"address"},{"internalType":"bool","name":"isExempt","type":"bool"}],"name":"setMaxWalletExempt","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"maxWalletPercent_","type":"uint256"}],"name":"setMaxWalletPercent","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"string","name":"newURI","type":"string"}],"name":"setMetadataURI","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"totalSupply_","type":"uint256"},{"internalType":"address","name":"owner_","type":"address"},{"internalType":"uint256","name":"feeRate_","type":"uint256"},{"internalType":"uint256","name":"maxWalletPercent_","type":"uint256"},{"internalType":"string","name":"metadataURI_","type":"string"}],"name":"setSupplyAndMint","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"setTradingEnabled","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"feeRate","type":"uint256"}],"name":"setTradingFeeRate","outputs":[],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"uint256","name":"minimumTokensOut","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapNativeToToken","outputs":[{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"stateMutability":"payable","type":"function"},{"inputs":[{"internalType":"uint256","name":"tokensSold","type":"uint256"},{"internalType":"uint256","name":"minimumNativeOut","type":"uint256"},{"internalType":"uint256","name":"deadline","type":"uint256"}],"name":"swapTokenToNative","outputs":[{"internalType":"uint256[]","name":"amounts","type":"uint256[]"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[],"name":"symbol","outputs":[{"internalType":"string","name":"","type":"string"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"totalSupply","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradingEnabled","outputs":[{"internalType":"bool","name":"","type":"bool"}],"stateMutability":"view","type":"function"},{"inputs":[],"name":"tradingFeeRate","outputs":[{"internalType":"uint256","name":"","type":"uint256"}],"stateMutability":"view","type":"function"},{"inputs":[{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transfer","outputs":[{"internalType":"bool","name":"success","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"sender","type":"address"},{"internalType":"address","name":"recipient","type":"address"},{"internalType":"uint256","name":"amount","type":"uint256"}],"name":"transferFrom","outputs":[{"internalType":"bool","name":"success","type":"bool"}],"stateMutability":"nonpayable","type":"function"},{"inputs":[{"internalType":"address","name":"newOwner","type":"address"}],"name":"transferOwnership","outputs":[],"stateMutability":"nonpayable","type":"function"},{"stateMutability":"payable","type":"receive"}]
[ Download: CSV Export ]
[ Download: CSV Export ]
A token is a representation of an on-chain or off-chain asset. The token page shows information such as price, total supply, holders, transfers and social links. Learn more about this page in our Knowledge Base.